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ABSTRACT: Simulating the coupled electronic and nuclear
response of a molecule to light excitation requires the application
of nonadiabatic molecular dynamics. However, when faced with a
specific photophysical or photochemical problem, selecting the
most suitable theoretical approach from the wide array of available
techniques is not a trivial task. The challenge is further complicated
by the lack of systematic method comparisons and rigorous testing
on realistic molecular systems. This absence of comprehensive
molecular benchmarks remains a major obstacle to advances within
the field of nonadiabatic molecular dynamics. A CECAM
workshop, Standardizing Nonadiabatic Dynamics: Towards Common
Benchmarks, was held in May 2024 to address this issue. This
Perspective highlights the key challenges identified during the
workshop in defining molecular benchmarks for nonadiabatic dynamics. Specifically, this work outlines some preliminary
observations on essential components needed for simulations and proposes a roadmap aiming to establish, as an ultimate goal, a
community-driven, standardized molecular benchmark set.

1. INTRODUCTION
Modeling the dynamical behavior of a molecular system upon
photoexcitation is a formidable theoretical and computational
challenge. This is due to the involved coupled electron−nuclear
dynamics, the so-called nonadiabatic effects, that necessitate
treatment beyond the Born−Oppenheimer approximation.1−4

As a result, the development of methods for simulating
nonadiabatic molecular dynamics (NAMD) remains a key
area of focus,5−9 with research groups in theoretical chemistry
and chemical physics having been particularly active in
improving and testing simulation methods for several decades.
The field of NAMD has benefited from advances in

experimental techniques capable of imaging the coupled
electron−nuclear dynamics of molecules upon light absorption.
The development of ultrashort laser pulses and subsequent
experiments in femtochemistry10 revealed direct measurements
of dynamical processes in molecules,11−15 which have helped
validating and guiding advances in NAMD methodologies.

However, the field of NAMD has also been fueled by significant
progress in the development of efficient algorithms and
software16−31 able to solve the coupled dynamics of electrons
and nuclei. Thanks to all of these developments, strong
collaborations between experiments and theory, for example in
the context of gas-phase time-resolved spectroscopy, have
emerged for studying the excited-state dynamics of many
systems, and have sparked community efforts aiming to
challenge the predictive power of various NAMD methods.32

Despite these significant steps toward unraveling the ultrafast
photodynamics of numerous molecular systems, the field of
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NAMD still faces considerable challenges, as the following
sections will discuss. At the same time, the reliability and
trustworthiness of theoretical predictions often remain difficult
to assess.
As a result, the community of developers and users of NAMD

has recently pointed out the critical need for established and
standardized benchmarks to advance the field. By benchmark
here, we mean well-chosen systems that can be used to compare
and test computational methods, along with a community-
accepted robust procedure to be followed whenever newly
developed methods and approximations in NAMD are tested.
Benchmarks in NAMD are needed to improve methodologies,
ensure reproducibility, estimate the reliability of the predictions,
and enable theoretical developments to keep pace with
experimental techniques. Further, we believe that benchmarking
existing methodologies and codes will ultimately assist users and
newcomers to NAMD in identifying the most suitable technique
for addressing specific problems.
Benchmarking has long been a cornerstone of computational

chemistry, for instance of electronic structure theory,33−36 and
computational sciences in general.37,38 While such efforts serve
as inspiring examples, NAMD presents unique challenges due to
its inherent complexity. The outcome of an NAMD simulation
relies on the calculation of observables with intricate time and
energy dependencies, which are often associated with a wide
range of physical and chemical phenomena. The high
dimensionality of realistic molecular systems makes it
impossible to simulate their quantum dynamics exactly. As a
result, using approximations to the time-dependent molecular
Schrödinger equation is necessary, which has driven the
development of numerous NAMD methods over the past 40
years.
A CECAM workshop,39 entitled Standardizing Nonadiabatic

Dynamics: Towards Common Benchmarks, took place in Paris in
May 2024 with the central goal of stimulating the NAMD
community toward developing a common benchmark set by (i)
agreeing on the main ingredients required to test all families of
NAMD techniques, of which we will provide examples in
Section 2, and (ii) selecting potential molecular systems for
further tests. This Perspective summarizes the main conclusions
reached during the CECAM workshop, aiming to inform the
broader scientific community and encourage future benchmark
efforts. More specifically, this Perspective serves as an
opportunity to elaborate on key questions that emerged from
the workshop regarding what makes a proper benchmark in
NAMD.
Discussionsmade it clear that, given the complexity of NAMD

simulations, initial attempts to propose realistic molecular
benchmarks should begin with simple systems, namely small or
medium-sized molecules in the gas phase. Even with such a
limited focus, numerous open questions still arose during the
discussions in the workshop.

• What constitutes an adequate reference for a benchmark
in NAMD? An experiment or an accurate simulation?

• How do we decide which observables should be
prioritized when establishing the reliability of a given
method?

• How can NAMD methods based on fundamentally
different theoretical frameworks be compared, such as
those based on wave functions and those based on
trajectories?

• How can different electronic-state representations and the
intricacies of electronic-structure methods be handled?

• How can we even ensure that different NAMD techniques
are initialized in the same way for a given benchmark
system?

• How can we ensure that statistical convergence of
computational results is achieved?

In addition to offering a structure for this Perspective article, the
questions above highlight key topics that require dedicated
attention to ensure the definition of proper and generalized
benchmark systems in nonadiabatic dynamics. Accordingly,
Section 2.1 proposes some prototypical phenomena and related
families of molecular systems that were considered appropriate
for benchmarking. Section 2.2 is dedicated to the different
families of NAMD methods, aiming to identify the most
representative theoretical approaches that can be used for a
systematic comparison. Section 2.3 provides a brief overview of
the issues related to various electronic-structure methods for
obtaining electronic energies and other electronic properties. In
Section 2.4, we discuss the problem of the initial conditions for
NAMD and how to ensure an equivalent initialization of the
dynamics across different theoretical methodologies. Section 2.5
identifies suitable physical observables and properties that can
be directly calculated in an NAMD simulation and used in the
context of benchmarking. In Section 2.6, we examine the role of
experimental measurements and their suitability as a reference
for NAMD. Finally, Section 3 summarizes the key insights that
emerged from the CECAM workshop and outlines practical
strategies for the community to advance the initiative of
establishing robust benchmark systems for NAMD. We discuss
how members of the community with diverse expertise can
organize, share data, and collaborate effectively while also briefly
exploring the future prospects for benchmarking. In this sense,
this Perspective acts as a roadmap for future developments in
NAMD.

2. TOWARD MOLECULAR BENCHMARKS: GENERAL
CONSIDERATIONS

So far, mostly low-dimensional models of nonadiabatic
processes have served as benchmark sets for NAMD,40−46

while many software packages try to incorporate such models in
their benchmarking capabilities.19,47,48 These models have often
been engineered to challenge specific aspects of the NAMD
formalism and offer the great advantage that they typically have
numerically exact results to compare with. The famous Tully
models, proposed in 1990 to evaluate the accuracy of the
trajectory surface hopping method,40 are still nowadays widely
used by the NAMD community. This set of three one-
dimensional model systems was specifically designed to
investigate prototypical nonadiabatic processes, including single
and multiple nonadiabatic crossings. However, the overarching
goal of NAMD methods is to describe the photodynamics of a
molecule in its full dimensionality. Thus, benchmarking NAMD
on realistic photochemical processes is necessary to provide
justification for their suitability in the simulations of the
molecular systems of interest. In addition, while some
approximations are thoroughly tested and understood for low-
dimensional problems, their performance in higher dimensions
is not necessarily known. In this respect, multidimensional
model potentials are also important for benchmarking, and are
often used by the community especially to compare fully
quantized and mixed quantum-classical approaches.42,49−51
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Constructing multidimensional potential energy surfaces
(PESs) can rapidly become a very difficult task. The situation
becomes even more complex for large molecular systems
(hundreds of atoms) involving dozens of coupled excited states,
where energies, gradients, and nonadiabatic couplings must all
be considered. In these cases, strategies to reduce computational
costs, such as dynamically limiting the number of excited states
or nonadiabatic couplings to be calculated, become indispen-
sable.52

The challenge of constructing multidimensional PESs is often
circumvented by performing excited-state dynamics based on
on-the-fly electronic structure calculations. Therefore, the
concept of benchmarks needs to be adapted to on-the-fly
NAMD, as was recently done with the “molecular Tullymodels”,
composed of ethylene, 4-N,N′-dimethylaminobenzonitrile
(DMABN), and fulvene.53 This benchmark set has been
adopted by the community, and already several NAMD
methods have been tested on one or more of these systems.54−61

While useful, the molecular Tully models have shortcomings,
such as the limited set of properties that have been used for
comparisons, the fact that initial conditions were oriented
toward trajectory-based methods, and the fact that only
commercial software has been used for the underlying electronic
structure, preventing broader accessibility and reproducibility.
Even leaving the electronic-structure problem aside, it is evident
that developing generalized and reliable benchmark sets for
NAMD comes as a stringent challenge and currently hampers
further developments in the field.
2.1. Selected Photophysical and Photochemical

Phenomena for Benchmarking. This Section describes

photophysical and photochemical processes that could be used
to assess the performance of different NAMD methods. In the
following, we propose to select a few specific light-triggered
phenomena, with the aim of achieving two main goals:
narrowing down the choice of current benchmark systems,
and providing some clear points of comparison between the
results of different NAMD calculations (see also Section 2.5).
The chosen phenomena should cover diverse aspects of
photodynamics, highlighting the role of both nuclear and
electronic effects. They should be generally well understood to
avoid controversies related to the interpretation of the results.
Additionally, we choose to privilege unimolecular processes in
order to avoid unnecessary complexities in the early stage of
building a benchmark strategy. With these elements in mind, the
following four types of processes, which are briefly described
below and illustrated in Figure 1, were preselected as interesting
test systems.

• Photoisomerization (ISO): ABC + hν → CAB
• Photodissociation (DIS): AB + hν → A + B
• Nonreactive radiationless relaxation (NRR): 1A + hν →

1A*[→ 3A*] → 1A

• Excited-state intramolecular proton transfer (ESIPT):
AH···B + hν → A···HB.

We note, however, that this list of phenomena is by no means
exhaustive and future benchmark efforts will extend this
selection to include, for instance, systems with high densities
of electronic states, initialized in a coherent superposition of
states, systems undergoing photoinduced electron transfer, or

Figure 1. Schematic representation of the four phenomena of interest for the benchmarking of NAMD methods: (a) photoisomerization, i.e., an
isomerization induced by photoexcitation; (b) photodissociation, i.e., bond-breaking activated by absorption of light; (c) nonreactive radiationless
relaxation, i.e., transition between electronic states initiated by photoabsorption, potentially involving different spin multiplicities, without resulting in
different photoproducts; and (d) excited-state intramolecular proton transfer, occurring upon photoexcitation, typically involving hydrogen-bonded
donor and acceptor groups. The curves labeled with S and T represent singlet and triplet potential energy curves, respectively, and the asterisk indicates
an excited state of a species. The blue dashed arrows show nuclear motion along a molecular coordinate.
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excited-state energy transfer or charge migration, or complex
dynamical processes such as molecular collisions.
The above phenomena are some of the most common

photoinduced processes in molecules (see textbooks on
molecular photophysics and/or photochemistry2,62−65) and
are representative of many of the current applications of NAMD
methods. A search through the Semantic Scholar Academic
Graph66 indeed reveals that, when using the keywords
“nonadiabatic dynamics”, at least 50% of research articles on
molecular systems published in the last 10 years discuss one of
the four phenomena outlined above. Each of these phenomena
presents a different challenge from a theoretical perspective:
complex interplay between electronic character and nuclear
motion (DIS), potential involvement of tunneling effects
(ESIPT), molecular rearrangement (ISO), or complex transfer
of electronic population (NRR). In the following, we discuss a
few selected examples (i.e., not an exhaustive list) that
demonstrate the importance of such light-induced processes.
One of the most paradigmatic examples of ISO is the cis →

trans isomerization of retinal induced by photon absorption in
mammalian eyes.67,68 Azobenzenes, stilbenes, and spiropyrans
are also prominent classes of compounds subject to photo-
isomerization.69−71 As shown in Figure 1a, photoisomeriza-
tion72 begins with light absorption, which weakens an originally
locked bond (for example, by promoting an electron from a π to
a π* molecular orbital in a π bond). This weakening of the
originally locked bond allows the molecule to rearrange easily,
often by rotation around a (pseudo)single bond. In many
photoisomerization processes, such as those involving retinal,
azobenzene, and stilbene, the first excited state possesses a
minimum located very close to the S0/S1 conical intersection
(see Figure 1a). This minimum often corresponds to a geometry
where the isomerization dihedral angle is close to 90−110°.
Upon reaching this region of configuration space, the molecule
can either proceed with a full photoisomerization or return to
the original isomer, typically through a nonradiative decay
involving a conical intersection and additional nuclear motion.72

In the field of femtochemistry, DIS was one of the first studied
processes,10,73 and is schematically represented in Figure 1b. In
the series of pioneering experiments by Zewail, the study of the
photodissociation of iodocyanide (ICN)74 preceded that of
sodium iodide (NaI),75 which was already studied in the earliest
experiments of Polanyi.76 Wavepacket dynamics simulations
have supported these experiments from the beginning43,77−81

and NaI, as well as similar alkalihalides, has been extensively
used as a simple one-dimensional test case for quantum
dynamics methods since.82−84 Absorption of UV light by small
organic molecules such as, for example, methanol, phenol or
pyrrole readily leads to chemical bond breaking via dissociative
excited states (S1 in Figure 1b).85−87

NRR involves the complex nonradiative electronic population
decay that can be observed between states of the same spin
multiplicity (internal conversions) or between states with
different spin multiplicity (intersystem crossings), see Figure
1c. Beyond common single crossings between excited states
within the singlet manifold,88 typical examples of complex
internal conversions that do not involve large amplitude nuclear
motions are decays induced by repeated crossings of regions of
strong nonadiabaticity89 or reflections,53 three-state conical
intersections90 or extended degeneracies between electronic
states.91 Intersystem crossings are driven by spin−orbit
coupling, and are, thus, most often associated with transition
metal complexes.92 Nonetheless, they are also common in

organic molecules,93−97 particularly in carbonyl compounds,
when sulfur- or selenium-substituted,98−101 and in nitroaromatic
compounds.102,103 It should be noted that since spin−orbit
coupling is generally relatively weak, the time scale necessary for
observing significant intersystem crossing can range from few
hundreds of femtoseconds to hundreds of nanoseconds.104 In
addition, the performance of simulations of intersystem crossing
may depend on the strength of spin−orbit coupling, especially
since it is also now established, experimentally and theoretically,
that intersystem crossing can compete on similar time-scales as
internal conversion, at least in geometrically unconstrained
molecules with high density of states and overlapping spin
manifolds.105−107 Although several NAMD approaches have
been formulated to describe intersystem crossing,108 simulations
over long time scales still remain challenging.
ESIPT reactions may occur in complex biological systems and

are exploited for the development of sensors and sunscreens,
among others.109−112 For the purpose of our benchmark, ESIPT
processes taking place on ultrafast time scales are of particular
interest as they are generally simpler to simulate with most
NAMD methods.113 Molecules exhibiting ESIPT typically
contain donor and acceptor units linked by an intramolecular
hydrogen bond, allowing the proton to easily migrate upon
photoexcitation, as in molecules like 2-(2-hydroxyphenyl)-
benzoxazole (HBO) and hydroxybenzo[h]quinolone
(HBQ).114,115 The mechanism of this migration can occur via
two distinct pathways, illustrated in Figure 1d. The small barrier
is overcome thermally, after which the proton undergoes a
“ballistic” type motion between the donor and the acceptor;
alternatively, tunneling through the potential barrier is also
possible. The proper description of tunneling, which is a
classically forbidden process, requires the inclusion of nuclear
quantum effects for the treatment of at least some nuclear
degrees of freedom (e.g., involving protons). This can be done
by either adopting a purely quantum description116−118 or
extending the phase space by employing coupled trajectories as,
for example, in the ring polymer formalism.119,120 Tunneling,
however, constitutes a challenge for NAMD methods relying
solely on independent classical-like trajectories.
In summary, the phenomena highlighted in this section, i.e.,

ISO, DIS, NRR and ESIPT, are representative of a large variety
of processes found in photophysical and photochemical
applications. Simulating the underlying photodynamics requires
that NAMDmethods are able to capture challenging features, as
mentioned above. Therefore, determining the capability of
NAMD methods to describe accurately these highlighted
phenomena will provide valuable insights into their strengths.
Since NAMD methods are inherently approximate and, as
expected, may perform well for certain systems but less so for
others, the representative phenomena discussed here are not
meant to be used as criteria for direct rejection of methods that
do not match the reference results. Instead, benchmarking
against these phenomena is intended to help users select
appropriate methods or identify areas for improvement,
depending on the specific problem being addressed.
2.2. Computational Methods for NAMD.Many different

NAMD methodologies have been developed over the years,121

and in the interest of treating a comprehensive set of molecular
benchmarks, the techniques developed and applied within the
NAMD community should be broadly represented. Here, we
briefly summarize some of these approaches related tomolecular
dynamics and (photo)chemical reactions, with a schematic
overview being given in Figure 2. The NAMD approaches
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presented below are organized mainly based on the underlying
assumptions, and for the sake of conciseness, we only provide
some general information on the methods and on the key
references. Note, however, that we cannot provide details on all
the effects that these assumptions have on the outcome of a
simulation, as this is, indeed, the ultimate goal of benchmarking.
Early efforts in the field can perhaps be traced back to the

development of real-space grid-based solvers for the time-
dependent Schrödinger equation, such as the discrete variable
representation (DVR) approach,122,123 or sparse-grid ap-
proaches.24,124 Going beyond the DVR picture while maintain-
ing the concept of a fixed underlying basis, the multiconfigura-
tional time-dependent Hartree (MCTDH) family of meth-
ods125,126 comprises a powerful range of exact numerical wave
function solvers, including the original and multilayer (ML-
MCTDH) formulations,127,128 which are available for fermions,
bosons, and mixtures of the two.129 There are also approaches
within this framework to treat density operators (ρ-
MCTDH).130−133 While fundamentally different at first sight,
the time-dependent density matrix renormalization group (TD-
DMRG)134,135 and tree tensor network state (TTNS)
extensions thereof actually are another way to solve the ML-
MCTDH equations of motions.136,137

A challenge for applying these approaches to high-dimen-
sional systems is that the global electronic PESs and related
couplings as well as local operators are required to be in a
separable form, either sum-of-products (for MCTDH) or a tree,
multilayer representation (for ML-MCTDH), as a prerequi-
site.138,139 Alternatively, additional time-dependent sparse-grid
approximations can be used together with MCTDH meth-
ods.140,141 Furthermore, the surfaces and couplings should
preferentially be in a diabatic representation to avoid numerical
issues arising from singularities at conical intersections in the
adiabatic representation.
Relaxing the constraint of having a fixed basis has led to

dynamical wavepacket methods such as full multiple spawning
(FMS)142 and ab initio multiple spawning approaches
(AIMS),7,143 as well as the recent variants of AIMS that have
been developed to include external fields,144 spin−orbit
coupling,145 and to optimize the computational efficiency.146,147

In this family of methods, nuclear trajectory-basis functions
represented by frozen Gaussians evolve classically on adiabatic
PESs. In addition, there is the closely related range of techniques
stemming from multiconfigurational ansa ̈tze, such as the

coupled-coherent states approach (CCS),148 the multiconfi-
gurational Ehrenfest method (MCE),149 and the ab initio
multiple-cloning algorithm (AIMC),150 that in general use
different PESs than the adiabatic ones to evolve the trajectory-
basis functions.
Using a fully variational framework with Gaussian wave-

packets leads to the variational Gaussian-based approaches,
namely the variational multiconfigurational Gaussian (vMCG)
fo rmu l a t i on and Gaus s i an -ba s ed MCTDH (G-
MCTDH).151−153 More recently, direct-dynamics extensions
of vMCG (DD-vMCG) have been developed enabling
implementations with on-the-fly electronic structures,154 for-
going the need to precompute a global PES.
While the above trajectory-guided methods have been

developed to directly tackle the time-dependent molecular
Schrödinger equation, quantum-classical methods simplify the
coupled electron−nuclear quantum problem by decomposing it
into a quantum electronic system coupled to a classical-like
nuclear system. Quantum-classical approaches can capture some
of the quantum aspects of nuclear dynamics by using an
ensemble of trajectories to represent the nuclear density, and
they are extremely appealing due to their tractable computa-
tional cost.
Surface-hopping methods, in their original formula-

tion40,155,156 and further developments157−164 have become an
important class of algorithms for simulating mixed quantum-
classical dynamics. Of these, the fewest switches surface hopping
(FSSH) approach of Tully40 is perhaps the most popular choice
in current practice. Alternative hopping formalisms have been
introduced and gained popularity to circumvent the direct
calculation of nonadiabatic or overlap couplings, such as
Landau−Zener surface hopping (LZSH) or Zhu−Nakamura
theory.157,165−167 Decoherence corrections (dFSSH), which are
intended to cure the overcoherence problem with FSSH and
ensure consistent numerical propagation of classical and
quantum populations by enforcing population alignment during
decoherence events,168,169 have been developed from numerous
different approaches,170−175 as well as alternative hopping
algorithms.165,176−179 While surface-hopping methods are a
popular choice in applications, there remain many open
questions in terms of conceptual grounds169 and formulation
of an optimal algorithm, particularly, pertaining to how velocity
rescaling and frustrated hop protocols are implemented,180,181

or concerning the treatment of trivial crossings.182,183 As such, a

Figure 2. Selected techniques from the range of NAMD methods that are relevant to establishing molecular benchmarks.
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range of alternative surface-hopping approaches have also been
developed, including approximate methods based on the exact
factorization of the full molecular wave function,184,185 which
can involve coupled177,186−188 or auxiliary189−192 trajectories
(SH-XF). Other FSSH-based variants that offer improved
accuracy have also been developed.175,179,192−196 For example,
while the standard implementations of surface-hoppingmethods
conserve the energy of each classical nuclear trajectory in the
ensemble, it has been pointed out that energy should be
conserved over the trajectory ensemble as a whole, as quantum-
trajectory surface-hopping methods do,195,196 which eliminates
the need for velocity rescaling and special treatments for
forbidden hops. Surface hopping has also been generalized
beyond internal conversion160,197,198 and beyond the usual
quantum-electron/classical-nuclei partitions.199 Recently, using
the semiclassical mapping formalism, a mapping approach to
surface hopping (MASH) has also been introduced.200−202

Mean-field type approaches are another major category of
trajectory-based dynamics methods. While Ehrenfest dynam-
ics203 belongs to the family of quantum-classical methods and is
perhaps the most well-known method of this type, a number of
notable improvements have been developed. Quantum-
Ehrenfest (Qu-Eh) combines the idea of evolution on an
average potential with quantum dynamics and has been related
to a particular formulation of vMCG.204 The ab initio multiple
cloning (AIMC) has been proposed as an alternative to address
the coherence issues inherent in Ehrenfest trajectories, naturally
incorporating decoherence through cloning events.150,205 A
valuable improvement of semiclassical Ehrenfest was the
inclusion of coherence and decoherence effects in the coherent
switching decay of mixing (CSDM) method.206−208 One
important branch of these developments stems from the
semiclassical initial value representation.209−213 More recently,
fully linearized,214−218 and partially linearized219,220 approaches
based on the mapping formalism (linearized spin mapping,
LSM) have been put forward,221 which have also proven to offer
improved accuracy over the Ehrenfest limit. More generally, it is
worth noting that mapping Hamiltonian approaches, such as the
Meyer-Miller model, provide an effective framework for
investigating nonadiabatic dynamics by transforming discrete
quantum states into continuous physical variables.221−228 In this
way, electronic and nuclear degrees of freedom can be treated on
an equal footing in the phase space.229−231 The exact
factorization of the full molecular wave function can also be
used as a starting point to derive coupled-trajectory mixed
quantum-classical (CTMQC) dynamics,232−235 such that
decoherence effects naturally emerge as correction terms to
themean-field Ehrenfest equations. Additional variants of mean-
field Ehrenfest have been developed to include external fields
and simulate transient absorption spectroscopy.236,237

The mixed quantum-classical Liouville (MQCL) equation
represents another class of NAMD methods, which adopts the
density matrix formalism and rigorously introduces the classical
limit starting from the quantum-mechanical Liouville-von
Neumann equation.238,239 MQCL is exact in various conditions,
for instance in the case of linear coupling between the quantum
and the classical subsystems, and has been shown accurate for
proton transfer and proton-coupled electron transfer reac-
tions.240,241 It is important to mention here that by introducing
approximations in MQCL, as shown in ref 162, the surface-
hopping scheme can be derived, hence, putting such a
phenomenological approach on a firmer ground. The MQCL
has also been used to derive mean-field242 and improved mean-

field algorithms using full231,243 and partial linearization
techniques,244,245 introducing the groups of linearized semi-
classical methods (LSC) and partially linearized methods
(PLDM). A closely related range of techniques have been
developed using a path integral formulation,246 which also
permits full247 and partial linearization248 approximations.
Still in the density matrix representation, a further range of

numerically exact approaches have been developed to solve the
electron−nuclear problem. Real-time path integral methods
such as the quasi-adiabatic path integral (QuAPI) meth-
ods,249,250 and recent extensions such as the quantum-classical
path integral approach251 and the small matrix path integral
approach,252 use the Feynman path integral method to
propagate quantum degrees of freedom. Nonequilibrium
Green’s functions (NEGF),253−255 often applied to mesoscopic
systems and transport problems, can also be of interest to study
proton tunneling reactions.256 Ring polymer molecular
dynamics (RPMD) methods, that extend the imaginary-time
path-integral formalism to the real-time domain, have been
originally developed for ground-state calculations to account for
nuclear quantum effects,257 but have been also generalized in
various flavours to treat nonadiabatic problems.119,258−261

Other related quantum dynamics methods, which employ
either a density-matrix or a wave function formalism, are also
worth mentioning here, such as nuclear-electronic orbital
(NEO) methods,118,262,263 the hierarchical equations of motion
(HEOM) method,264,265 TTNS approximations266,267 and
tensor-network-based time-evolving block-decimation techni-
ques (TEBD), among others.268,269

A careful comparison between quantum dynamics and
trajectory-based NAMD should address the potential for zero-
point energy (ZPE) leakage in the latter, especially in long-time-
scale processes such as intersystem crossings. Recently
developed Hessian-free ZPE correction methods provide a
promising solution to improve the consistency of simulations
across these approaches.270,271

Recent, provably efficient quantum-computer (QC) algo-
rithms for NAMD simulations present additional opportunities
for benchmarking. QC NAMD algorithms use the exponentially
large Hilbert space of the QC to represent the Hilbert space of
the nuclei and electrons of molecules. This representation allows
them to prepare states, simulate dynamics, and measure
observables using time and memory polynomial in system size.
QC algorithms have been developed for both analog quantum
simulators and fully programmable digital quantum computers.
Most of the analog approaches are simulations of vibronic-
coupling models,272−275 and have been implemented on
quantum hardware to simulate dynamics around conical
intersections,273 charge transfer,274 and photoinduced dynamics
in molecules such as pyrazine.275 Digital algorithms require
large-scale, fault-tolerant quantum computers, but they could
simulate the time-dependent Schrödinger equation of all nuclei
and electrons on a grid exactly, up to a known and controllable
error.276−280 Other digital algorithms for near-term QCs use
variational principles, but lack provable error bounds.281,282 QC
approaches both require new benchmarks to allow fair
comparisons with heuristic classical methods and deliver new
tools for error-analysis which will allow developers of classical-
computer algorithms to more accurately bound the errors of
their simulations.
Figure 2 provides an overview of the classes of methods

presented in this section. However, NAMD is a rapidly evolving
field, with a wide variety of methods being constantly developed
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and improved, thus, it is challenging to provide an exhaustive list
of all the methodologies and variations that have been
introduced. Our goal is to offer an overview of the most
common and widely used approaches. We also recognize that
some methods on the list have primarily been used with low-
dimensional model systems so far, but in principle, they could be
adapted for realistic molecular systems. Figure 2 also gives an
additional categorization of the methods by organizing them in
“categories” highlighted by the boxes.
2.3. Electronic Structure and Representation of

Potential Energy Surfaces. The ingredient of an NAMD
simulation that arguably plays a critical role on its outcome is the
underlying electronic structuremethod, i.e., the level of theory at
which the electronic energies, gradients, and couplings between
electronic states are calculated − as highlighted in numerous
studies.106,283−287 The impact of the electronic structure on the
result of NAMD remains, however, challenging to predict. While
very different PESs calculated from two different electronic-
structure methods often lead to different excited-state
dynamics,288 examples in the literature show that this correlation
does not always hold: vastly different PESs can lead to similar
dynamics, and similar PESs can lead to different results in
NAMD.286,289−291 In any case, it is critical to ensure that the
electronic-structure quantities for any benchmark system are
obtained consistently to fairly compare the outcome of the
NAMD simulations.
For the current standard practice of benchmarking on low-

dimensional analytical models, ensuring consistency in elec-
tronic structure between different NAMD methods is a minor
issue. A model Hamiltonian usually provides analytical
expressions for energies and (diabatic) couplings, and perhaps
even for gradients and for nonadiabatic couplings, making it
simpler to ensure that different NAMD simulations are
performed using the same electronic information.292

In more realistic scenarios, NAMD is often carried out with
electronic structure calculated on the fly (also called direct-
dynamics) using trajectory-basis functions or quantum-classical
techniques. This terminology means that any electronic-
structure quantity for the dynamics is calculated locally, i.e., at
the current nuclear configuration at that time step, rather than
being precomputed or predefined over the full configuration
space. In these cases, resolving the electronic structure problem
becomes a critical step before establishing benchmark systems.
To meaningfully compare different NAMD methodologies and
software, it is essential to define the level of electronic-structure
theory, ensuring that the underlying electronic-structure
quantities remain consistent for all NAMD methods being
compared.
An ideal electronic structure method should fulfill several

criteria: (1) provide electronic energies, nuclear gradients, and
any required couplings (e.g., nonadiabatic couplings, spin−orbit
couplings, transition dipole moments), (2) describe all
electronic states involved in the dynamics with equal accuracy
across the entire configuration space encountered during the
dynamics, (3) be numerically robust, (4) capture the potential
multiconfigurational character of electronic wave functions, and
finally, (5) be computationally affordable.7,293

Multiconfigurational methods294 like multiconfigurational
self-consistent field (MCSCF), (state-averaged) complete active
space self-consistent field (CASSCF), or complete active space
configuration interaction (CASCI) are computationally ex-
pensive but include static correlation, often providing a
qualitative correct picture of the PES. These methods allow

the user to select the active space orbitals (occupied and
unoccupied) that dominate the excited-state characters of the
molecule of interest.295 Making an informed choice of active
space, that is, making it as compact as possible while still
remaining sufficiently stable throughout the dynamics, can offer
a good compromise between cost and accuracy. However, in
many cases a CASSCF or CASCI approach may not be accurate
enough, due to the lack of dynamical correlation. This can be
incorporated through the application of perturbation theory
(e.g., via multistate or single-state CASPT2)296 or with
multireference methods (e.g., MRCIS or MRCISD).294 Such
methods bring an improved description of the PESs, in
particular when excited electronic states of different characters
interact, but also increase substantially the cost of the
calculation.296 Alternatively, scaled CASSCF methods (e.g., α-
CASSCF,297,298) introduce empirical corrections to state-
averaged CASSCF, improving the description of PESs while
maintaining computational efficiency, and have been success-
fully applied to study photochemical ring-opening and isomer-
ization reactions.298−300 If structural rearrangements during the
dynamics drive the molecule to regions of the PESs far from the
Franck−Condon region, a single computationally affordable
active space might not provide enough flexibility to describe the
photoproducts with the same accuracy as the initial molecule
often leading to instabilities in the electronic structure. As a
computationally efficient alternative, floating occupation mo-
lecular orbital complete active space configuration interaction
(FOMO-CASCI)301 was also employed in combination with
NAMD.302

For large molecular systems, linear-response (LR) time-
dependent (TD) density functional theory (DFT) is a practical
alternative due to its excellent balance between cost and
accuracy. However, LR-TDDFT often suffers from limitations
due to its approximations necessary for practical applications.303

One of them is its reliance on the adiabatic approximation, which
hinders describing conical intersections with the electronic
ground state, electronic states with double-excitation character,
and charge-transfer transitions and Rydberg transitions; range-
separated hybrids may help with these last two problems.304−314

These shortcomings may hamper the applicability of LR-
TDDFT in NAMD simulations for systems exhibiting such
features. In general, for any application to a molecular system,
the choice of an adequate density functional may be challenging
and requires careful benchmarking.315−317 Spin-flip variants of
these methods exist,318,319 which can address some of these
issues but often introduce spin contamination, except for spin-
adapted spin-flip methods.320−323 Some of the aforementioned
limitations of LR-TDDFT can be overcome using the ensemble-
DFT-based approach which combines multireference methods
within a density functional theory framework.324 In a related
approach, the mixed-reference spin-flip TDDFT (MRSF-
TDDFT) technique325 has been proposed recently. At variance
with LR-TDDFT, MRSF-TDDFT was shown to predict the
correct topology of conical intersections with the ground state
and to describe excited states with significant double excitation
character.326,327 Hole−hole Tamm−Dancoff approximated
(hh-TDA) density functional theory328 constitutes another
variant of LR-TDDFT adequately describing conical inter-
sections and combined with NAMD.329 Relatedly, particle−
particle RPA can describe double excitations well,330 and, along
with their oscillator strengths, related to their couplings, so can
dressed frequency-dependent TDDFT.331,332
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We note that, in addition to conventional LR-TDDFT, real-
time TDDFT (RT-TDDFT)303 has also been used. In RT-
TDDFT the electron density is propagated by integrating the
time-dependent Kohn−Sham equations. RT-TDDFT (or more
broadly, real-time electronic structure methods)333 can be
naturally coupled with Ehrenfest dynamics334 to propagate
nuclei classically with forces derived from a weighted average of
all electronic states. However, in this approach there is no need
for the explicit determination of individual electronic states and
their couplings.
The algebraic diagrammatic correction to second order,

ADC(2), is a wave function-based single-reference method that
has been exploited for NAMD.335,336 This method, in its original
implementation, possesses some limitations− it cannot describe
conical intersections with the ground electronic state283 and
suffers from a systematic flaw for carbonyl-containing
molecules.337 However, its overall accuracy and efficiency in
describing excited PESs and their coupling regions,312 as well as
its reliability, makes it a key contender for the NAMD of
medium-sized molecular systems. ADC methods are closely
related to coupled cluster (CC) methods,338 which were
historically not a popular choice for NAMD due to their
intrinsic instabilities.336,339 However, recent CC implementa-
tions managed to resolve some of these problems, and have
opened the door for CC-based NAMD simulations.340,341

Semiempirical multireference methods based on multi-
configurational configuration interaction wave functions built
from FOMO-CI,22,178,342,343 particularly those reparameterized
based on high level calculations, or the multireference
configuration interaction based on the orthogonalization-
corrected model Hamiltonian (MRCI/OMx),22,344 may offer
an affordable alternative for describing conical intersections and
complex electronic densities. If reparameterization has already
been performed for the molecule of interest, these methods can
be a suitable choice for benchmarking. They offer electronic
structure quantities at a low cost, enabling long propagation
t imes and large numbers of t ra jec tor ies to be
evolved.186,286,345−348

The use of a given electronic-structure method to benchmark
on-the-fly NAMD techniques is challenging, even if all the input
parameters (and initial orbitals) are provided. Ideally, the same
quantum-chemical code should be used to ensure a one-to-one
comparison, as minor implementation details, such as
convergence criteria or algorithmic differences, can impact the
final results. To promote accessibility and broader participation
of community members, benchmarks should preferably employ
freely available or open-source quantum-chemical codes that are
widely used within the NAMD community (e.g., Open-
Molcas,349 Bagel,350 Orca,351 NWChem,352 GAMESS,353

MNDO,354 MOPAC-PI21 or PySCF355). For many quantum-
chemical methods, ensuring consistency between two calcu-
lations is relatively straightforward if one uses the same version
of a given quantum-chemical code and the same input
parameters. The case is harder for multireference and multi-
configurational methods, for which it is crucial to ensure that the
very same initial molecular orbitals are included in the active
space. This can be achieved by making sure that the starting
orbitals are provided as a wave function file.
Grid-based methods for quantum dynamics require integrals

to be performed over the entire nuclear configuration space. On-
the-fly dynamics is hard to perform for such methods (even
though recent forays in this direction have been made356,357),
therefore they often rely on precomputed electronic structure

quantities to fit or build analytical models. A very common
approach for obtaining high-dimensional model potentials is to
parametrize the PESs with vibronic coupling (VC) models,
where the simplest form is the linear VC (LVC).358 An LVC
model proposes to build a harmonic expansion of the diabatic
states around the Franck−Condon region, using information
from electronic-structure calculations, along with the linear
coupling among these diabatic states. While VC models can
accurately capture the ultrafast decay in NAMD, in their
simplest LVC form, they are limited by their underlying
harmonic approximation for describing the PESs and can only
be applied to relatively rigid systems. Despite these short-
comings and when used on suitable systems, the LVC approach
has recently gained popularity as a cost-efficient mean for
comparing different trajectory-based approaches with accurate
quantum dynamics results in high-dimensional sys-
tems.51,54,55,92,181,359,360 Here it is worth noting that recent
advances in artificial intelligence and machine learning have
significantly enhanced the accessibility of high-dimensional and
anharmonic analytical potentials, reducing the computational
cost of electronic structure and improving the fitting
procedures,361 thus pushing NAMD simulations to longer
time scales.362−364 In this context, benchmarking efforts will
become even more critical in the future, particularly as machine
learning based interatomic potentials (MLPs) evolve into widely
adopted tools for NAMD. Well-defined benchmarks will be
crucial not only for testing traditional electronic structure
methods but also for providing a structured framework to assess
how well MLPs reproduce reference electronic structure results
within the same NAMD framework. Moreover, stable and
reliable MLPs have the potential to revolutionize how NAMD
methods are evaluated by enabling rapid and extensive testing,
and facilitating the efficient exploration of the parameter space in
existing NAMD techniques.
Finally, the use of fitted, analytical potentials versus on-the-fly

dynamics for benchmarking needs to be addressed further.
There is a clear and obvious advantage in developing models
based on analytical potentials, as they directly allow quantum
dynamics simulations to be performed and (near) numerically
exact solutions to be used as a reference. However, most
common applications of NAMD focus on molecules for which a
parametrization in full dimensionality is often inaccessible and
that are therefore more easily described by on-the-fly
simulations. Hence, NAMD benchmarks should be best
conducted based on both approaches: fitted/analytical
potentials and on-the-fly dynamics. One should stress that in
general, a NAMD simulation carried out on precomputed, fitted
potentials in reduced dimensionality cannot be compared with
NAMD conducted with direct dynamics in full dimensionality
(see for instance a quantum dynamics study on a 2D model of
retinal,42 followed by fully dimensional direct dynamics365 and
experimental evidence366 demonstrating the necessity of
additional degrees of freedom). This is because the config-
uration space that can be explored is predefined in a
precomputed model, constraining the dynamics to a certain
region of the nuclear configuration space. It might be useful,
however, to conduct simulations on model potentials using on-
the-fly NAMD simulation methodologies to provide a strict
comparison of their performance against accurate grid-based
methods.
A plausible solution to such an issue is to fit directly a global

PES into analytical separable (sum of products or tree) form. In
this way, it could be used by the whole range of NAMD
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techniques. From a purely algorithmic perspective, one can
distinguish two classes of such fitting procedures: (i) those based
on machine learning (ML) or neural networks (NN) and (ii)
those relying on a functional ansatz related to tensor
decomposition algorithms.
The first category includes methods based on machine

learning or neural networks, such as single-layered Neural
Networks with specific activation functions367 and Gaussian
Process Regression with separable multidimensional kernels.368

The second category involves methods exploiting PES smooth-
ness under separable form constraints, including Smolyak
interpolation scheme with nondirect product basis369 and the
Finite Basis Representation (FBR) family of PES representa-
tions.370−372 FBR models can be optimized from scattered
reference data and have been applied to various physico/
chemical processes, including vibrational problems (6D/
9D),370,371 reactive scattering processes (13D/15D/
72D),371,373 and nonadiabatic dynamical problems (12D).
2.4. Initial Conditions for the Dynamics. Any NAMD

simulation requires a definition of the initial state of the
molecule before being excited by light or before the dynamics is
started. Therefore, a critical aspect to discuss is the nature of this
initial molecular state for the molecule of interest, be that the
ground state of the molecule or the state directly generated by
the photoexcitation process.374

Following the time-dependent perturbation theory to first
order for a system with two electronic states,4 one can show that
the first-order contribution to the molecular state immediately
after excitation by an infinitely short pulse (a δ-pulse) is simply
the initial ground-state nuclear wave function (multiplied by the
transition dipole moment between the ground and the excited
electronic state). In other words, if the molecule is excited by a
very short pulse, a commonly accepted approximation is to
simply project the ground-state nuclear wave function onto the
desired excited electronic state.375 This approximation, often
referred to as the sudden, or vertical, excitation, dramatically
simplifies the preparation of initial conditions for NAMD, as it
neglects the time duration of the excitation process (e.g., an
experimental laser pulse) and the precise nature of the molecular
state formed upon photoexcitation.
Within this sudden excitation, the initialization of a quantum

dynamics simulation only requires the nuclear wave function
associated with the ground electronic state for the system of
interest, often taken as the ground vibrational state for all modes
considered. This nuclear wave function can be obtained by
imaginary-time propagation or, for potential energy surfaces
invoking a harmonic approximation, simply from a Gaussian
nuclear wave function. Similarly, the most commonly employed
strategy for trajectory-based methods consists first of sampling
an approximate ground-state distribution. The harmonic
Wigner distribution, constructed from the molecular equili-
brium geometry and its harmonic normal modes, is often used to
sample representative initial conditions (nuclear momenta and
positions).6,374 Once the initial ground-state nuclear wave
function (quantum dynamics methods) or ground-state nuclear
momenta + positions (trajectory-based methods) are acquired,
they can be projected onto the desired excited electronic state to
begin the NAMD.
While the protocol described above is the most commonly

employed strategy to initialize a NAMD simulation, it relies on a
series of approximations,376 namely that (i) the molecule is in its
electronic and vibrational ground state before photoexcitation
and (ii) that the laser pulse employed is infinitely short (or at

least short enough for its bandwidth to overlap with all necessary
vibrational states in the excited electronic state for a projection
of the ground-state nuclear wave function), meaning that a
perfect nuclear wavepacket is generated in the excited electronic
state(s) of interest. We note that the initialization of quantum
dynamics simulations also often relies on the Condon
approximation, that is, the transition dipole moment does not
depend significantly on the nuclear geometries under the initial
wavepacket. Nevertheless, care must be taken since cases of
strong violation of Condon approximation have been
reported.377

For floppy molecules with multiple dihedral angles and low
rotational barriers, harmonic Wigner distributions are not
suitable for sampling initial conditions. Improvements in the
generation of the ground-state probability density can be
obtained for trajectory-based methods by using ab initio
molecular dynamics (AIMD). Initial positions and momenta
can be obtained from long, equilibrated ground-state molecular
dynamics simulations, providing a more accurate representation
of the nuclear phase space. Incorporating ZPE in the dynamics
requires the use of a quantum thermostat (QT),378−380 as a
regular 300 K AIMD would lead to molecular distributions that
are too narrow in comparison to their ZPE equivalent.381 QT-
AIMD can overcome some limitations of the harmonic Wigner
sampling, in particular for flexible molecules with low-frequency
(anharmonic) vibrational modes. Using the harmonic Wigner
sampling for molecules with photoactive low-energy modes can
lead to severe artifacts in the ensuing excited-state dynamics −
an issue fixed with the QT-AIMD.382

Moving beyond the sudden excitation requires a more careful
inclusion of the external electric field in the simulation, aiming
for more robust comparisons with experiments. Most methods
for NAMD have been extended to incorporate photoexcitation
t r iggered by an exp l i c i t l a ser pu l se (e .g . , re f s
31,160,236,237,383−385). This strategy, though, does appear
to stretch the approximations of methods like surface hopping
for longer laser pulses,144,386,387 and modifications of surface
hopping based on Floquet theory were presented in the
literature.388,389 Different works have discussed photoexcitation
beyond laser pulses, including incoherent sunlight375,390,391 or a
periodic drive,392 in NAMD. Building the effect of a laser pulse
within the initial conditions was also suggested.84,393,394

Furthermore, upon initial photoexcitation by a laser pulse, a
group of electronic states may be excited and the subsequent
dynamics can differ depending on whether the system evolves
from a superposition of states (pure) or a mixed ensemble.395

Another issue that needs to be addressed in the context of
benchmarking different families of methods for NAMD is the
representation of the electronic states. In conventional
trajectory-based methods, the nuclear dynamics is usually
performed by invoking electronic properties in the adiabatic
representation. On the other hand, quantum dynamics methods
often rely on the − more convenient − diabatic representation
to avoid encountering singularities of the nonadiabatic couplings
at conical intersections. Therefore, in the initialization of a
quantum dynamics simulation, the ground-state nuclear wave
function needs to be projected onto a given diabatic electronic
state. For a proper assessment of trajectory-based methods
against quantum dynamics results, the initial electronic diabatic
state needs to be translated appropriately into an adiabatic state
or a linear combination of adiabatic states when the trajectory-
based simulation is performed with methods employing the
adiabatic representation.
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2.5. Observables and Properties. Benchmarking NAMD
methods faces the challenge of identifying a unique, clearly
defined, and quantifiable “result”. In contrast, electronic
structure benchmarks are based on well-defined numerical
values such as electronic energies, or optimized geometries. The
outcome of a NAMD simulation involves a time-dependent
molecular wave function, with the desired results and properties
depending on the specific system and phenomenon under study.
Nevertheless, we aim to identify key properties and observables
that can facilitate both qualitative and quantitative comparisons
across different methods for NAMD.
In this section, we use the term observable in the physical

sense, namely a quantity that is directly determinable from an
experiment and is, therefore, independent of the theoretical
representation used in the calculations as it corresponds to the
expectation value of an operator. It is worth mentioning here
that, as it will become clear from the discussions of the next
sections, in this preliminary stage of our work on NAMD
benchmarks, we are not considering using experimental signals
as a reference for evaluating the performance of the simulation
methods. However, it is indeed likely that we will calculate
experimental observables, and, in order to provide fair and
unbiased grounds for comparisons, we will adopt − as far as it is
possible, given the different nature of various NAMD techniques
− the same methodologies to extract the experimental
observables from the available simulated data. By contrast, we
refer to a property as a quantity that may be used to interpret the
simulated dynamics or an experimental measurement, but that
cannot be directly measured. Below, we discuss how observables
and properties can be selected for benchmarks.
For the purpose of benchmarking, observables and properties

need to be selected such that different methods can be compared
fairly, following several criteria. First, it is desirable that the
considered observables or properties can be computed by every
NAMDmethod under investigation. For instance, the operators
involved in the calculation of expectation values should ideally
have a relatively simple form to allow for the computation of
high-dimensional integrals required for the quantum dynamics
approaches. Similarly, it should be possible to calculate the
observables directly as expectation values by reconstructing the
nuclear wave functions. For trajectory-based methods, the
observables and the properties are often calculated as trajectory
averages.
Second, it is also necessary to choose a set of observables and

properties that describe all aspects of the dynamical processes at
play. For NAMD, this normally requires the consideration of
both electronic and nuclear degrees of freedom. Different
methods are unlikely to reproduce each type of observable or
property equally well, so having the most diverse observable set
is important for a comprehensive comparison between methods.
Finally, NAMD methods employ different electronic

representations. Some electronic properties, such as electronic
populations may only be accessible in or dependent on a given
representation and shall be used “with care” for comparisons of
methods. One way to avoid this issue is to consider
representation-independent electronic properties and observ-
ables, such as optical spectra.
To make a tangible example of the observables and properties

that can be of interest for understanding the processes taking
place during a photochemical reaction, let us discuss Figure 3.
The absorption of light by an organic molecule in its vibrational
and electronic ground state, S0 (violet Gaussian on the left)
produces a photoexcited nuclear wavepacket in a singlet excited

electronic state, here S1 (green Gaussian on the left). The
photoexcited molecule relaxes nonradiatively via internal
conversion from S1 to S0, transferring the population to the
electronic ground state and accessing the configurations of the
various photoproducts (violet Gaussians in the center). The
remaining contribution to the nuclear wavepacket in S1 can be
transferred nonradiatively to a triplet state (blue Gaussians in
the center), here Tn, by intersystem crossing. Finally, the S1 and
the Tnwavepackets can ultimately relax radiatively to the ground
state (violet Gaussians on the right) via f luorescence and
phosphorescence.
Based on this schematic representation of a photochemical

reaction, the following properties could provide a useful way of
tracking the important aspects of the dynamics. The relaxation
of the photoexcited system to a lower energy electronic state can
be followed via the electronic (adiabatic and diabatic)
populations. While easily accessible, electronic populations are
a representation-dependent quantity and therefore, excited state
lifetimes in different spin multiplicities should additionally be
linked to an observable that is sensitive to them. Calculating the
time-dependence of the energy gap distribution between two
appropriate electronic PESs would additionally quantify the
motion of the nuclear wavepacket away from the conical
intersection seams toward a stable minimum energy geometry
on the lower-energy surface and give a quantitative picture of the
electronic relaxation, in particular for NRR. For molecular
systems consisting of donor and acceptor moieties, transient
exciton localization can be tracked, enabling the study of
intramolecular energy transfer between different chromophoric
units.396,397 Finally, an important aspect of photochemical
processes is the formation of photoproducts. This is particularly
important for characterizing ISO, DIS, and ESIPT phenomena,
and can be probed via the associated quantum yields, preferably
computed for different excitation wavelengths. For ESIPT-
related processes, it would be particularly interesting to study the
mechanistic details of the proton transfer, i.e., whether it is
stepwise or concerted. This can be deduced from the time-
evolved nuclear probability distribution of the transferring
proton or the kinetic isotope effect,398 for example.
To properly compare with experiments, it is essential to

consider various spectroscopic observables that can be used to
interrogate photochemical and photophysical phenom-
ena.394,399−404 Optical transient absorption,405−408 time-re-
solved X-ray absorption,409 2D electronic spectroscopy404,410

and time-resolved photoelectron spectroscopy411,412 are several
complementary techniques that directly probe the dynamical
changes in electronic structure associated with a particular

Figure 3. Processes that can occur upon photoexcitation of a molecular
system.
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process. All of these techniques can, in principle, distinguish
between states of different spin multiplicity,413−415 and the
method of choice may depend on whether the associated
valence or core excitation spectra or the photoionization cross
sections provide the greatest contrast between the molecular
species and states of interest. In particular, 2D electronic
spectroscopy is an ultrafast optical technique capable of
providing critical insights into coherence, which signifies the
simultaneous evolution of electronic and vibrational dynamics in
complex natural and synthetic systems416 Coherence refers to
the in-phase evolution of specific degrees of freedom and, in
quantum mechanics, is formally described by the off-diagonal
elements of the density matrix, encompassing both electronic
and vibrational components.417 Capturing such coherent
phenomena in NAMD simulations417,418 remains a significant
challenge due to the need for consistent and accurate
propagation of both electronic and nuclear degrees of freedom
at the surface crossings.
One advantage offered by time-resolved photoelectron

spectroscopy is that processes like electronic population transfer
involving an optically dark electronic state can be directly
observed.411 Recently, attosecond transient absorption spec-
troscopy419 and multiphoton ionization420 have been used to
measure and distinguish adiabatic and nonadiabatic effects in the
evolution of electronic coherences. Finally, time-resolved X-ray
diffraction421−423 and ultrafast electron diffraction424,425 spec-
troscopies provide a useful way of directly probing the nuclear
rearrangements of molecules in real-time and can be highlighted
as effective experimental tools for investigating ISO, DIS and
ESIPT phenomena. In particular, ultrafast electron diffraction
has shown sufficient sensitivity to monitor the motion of light
atoms like hydrogen in the context of photodissociation.426 In
general, scattering experiments are beginning to be employed to
detect information beyond structural dynamics, such as
electronic populations427 or indeed the rearrangement of
electrons during a reaction.428,429 This indicates that such
experiments stand to provide comprehensive and complete
information about the evolution of the molecular wavepacket.
2.6. The Role of Experiments in Benchmarking

Nonadiabatic Molecular Dynamics. Experimental observ-
ables are often regarded as the “ultimate” data for providing a
reference for results obtained from quantum chemical methods.
Spectroscopic techniques seem especially well-suited for
providing this due to their ability to reveal quantum state
information on the target system. However, there are a number
of challenges when drawing comparisons between experiment
and theory that need to be considered, particularly when
benchmarking NAMD simulations.
Ultrafast spectroscopies are reasonably young in comparison

to their static counterparts, with the earliest time-resolved
optical absorption measurements being performed in the
1970s.430 Many ultrafast techniques, such as time-resolved X-
ray absorption, are even newer,431−433 which poses a number of
further challenges for using this experimental data as a reference
in the benchmark of NAMD. The first of these is simply the
quantity of experimental data available. While ultrafast optical
techniques have seen significant hardware developments,434

such that “all-in-one” laser and spectrometer systems are now
commercially available, ultrafast optical techniques are never-
theless nowhere near as ubiquitous as standard UV−vis
absorption, which is now even being performed with
smartphones.435,436

A more serious issue for benchmarking is the reproducibility
and reliability of the experimental data, coupled with the quality
of the data reporting. Although chemists and physicists are
generally among the least concerned about a “reproducibility
crisis” in science,437 there have been recent reviews highlighting
how, for X-ray photoelectron spectroscopy (XPS), there is a
nontrivial number of papers reporting experimental data with
minor errors in the collection process and a much more
significant number with major issues associated with the
subsequent peak fitting and data analysis procedures.438

Growing concerns about the reproducibility problem in XPS
have prompted journals439 and the community440,441 to produce
documents on best practices for data collection, reporting, and
analysis in order to try and ensure consistent standards are
maintained.
No such systematic analysis exists for the ultrafast literature,

and many techniques are still sufficiently novel and challenging
to perform. Hence, the research focus is still far from prioritizing
systematic characterization studies. Even a brief survey of the
literature, though, will reveal many inconsistencies and
inadequacies in what experimental parameters are reported.
For example, many papers do not report how time-zero (where
the pump and probe pulses are temporally overlapping) is
established or whether any wavelength calibrations for detectors
have been performed and how. Often, only representative pulse
parameters for the pump and probe pulses, such as pulse
energies, temporal duration and central wavelengths, are
reported, and no spectral information provided. While not all
measurements are particularly sensitive to the excitation
conditions, without this information, it becomes difficult to
simulate the exact experimental conditions in excited-state
dynamics simulations, particularly when an explicit pulse is
included. While there are often reasons for not reporting all of
this information, it is clear that it would be highly beneficial to
specifically design experiments for use in theoretical bench-
marking studies, where a different approach to data collection is
required than for a standard photophysical experiment.442

It is also very important to make a clear distinction between
what is the true experimental signal of measurement and what
are parameters extracted from a fitting or modeling of the
experimental data. For example, ultrafast spectroscopies are used
to extract “lifetime” information, but the reported lifetimes are
normally extracted from some kind of kinetic model with an
inherent number of assumptions,443 although there are a few
notable exceptions.444,445 As explored more extensively in a
recent review,401 the same change in an experimental observable
can arise from different physical mechanisms, and it is important
to note that most spectroscopies are not directly sensitive to the
population dynamics, but rather to the population dynamics
convoluted with a transition probability. Evaluating the
trustworthiness of models and fits can be as challenging as
assessing the quality of experimental data and a difficult task
without direct engagement with experts.

3. OUTLOOK − A ROADMAP FOR MOLECULAR
BENCHMARKS IN NAMD

The multifaceted nature of NAMD has, to date, hindered
systematic efforts toward designing molecular benchmarks, with
only a few notable studies making headway.49,50,53 The intention
behind this Perspective is to narrow down the multitude of
available choices of “benchmarkable phenomena” and en-
courage collaborative efforts within the NAMD community
toward these goals. This Section summarizes key considerations
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for developing molecular benchmarks and presents an executive
outline for their implementation. The steps discussed in this
Perspective form the roadmap toward a community-driven
development of benchmarks for NAMD methods (Figure 4).

First, we briefly overview key insights from the workshop in
Paris,39 which established foundational ideas for this initiative.
One challenge identified by the community of NAMD users and
developers is the breadth and complexity of NAMD simulations,
demanding careful selection criteria to balance feasibility with
scientific relevance. To ensure meaningful assessments,
molecular benchmarks are meant to capture realistic non-
adiabatic phenomena while minimizing reliance on model
potentials with reduced dimensionality. The emphasis on
realistic processes − those measurable in experiments − reflects
the goal of creating benchmarks that will increase confidence in
the predictive power of current theoretical developments. We
have identified four relevant, although not exhaustive, groups of
molecular phenomena for detailed exploration: ISO, DIS, NRR
and ESIPT. They are connected to a range of observables, which
will be defined early on but whose calculation represents almost
the final step of the roadmap (Figure 4). Prioritizing direct

calculations of molecular observables reduces the influence of
different PES representations, ensuring that benchmarks
maintain scientific relevance by predicting measurable quanti-
ties.
As discussed above, this relates to the question about the role

of experimental data in benchmarking theoretical methods.
While reproducing experimental measurements remains a key
objective for the community, the direct prediction of
experimental observables should currently be viewed as a goal
rather than a strategy for benchmarking. Confidently bridging
the gap between experiment and theory requires active
collaborations from both sides in order to drive the development
of all aspects and ingredients of NAMD, and as such, remains an
ongoing area of research. However, this should not impede the
evaluation of NAMD methods in the context of benchmarking.
Therefore, we currently do not recommend the systematic
assessment of theoretical results by direct comparison with
experimental measurements unless the same experimental
observable is calculated. Even then, caution is required. In
trajectory-based NAMD methods, observables such as photo-
electron spectra may be reproduced with comparatively few
trajectories,446,447 while branching ratios require more.106 As a
consequence, it may be misleading to judge convergence and
overall accuracy on the basis of a single observable. In addition,
in Section 2.6, we focused our attention on the role of ultrafast
spectroscopy in the context of benchmarking NAMD.
Alternative and complementary experimental techniques, such
as time-resolved mass spectrometry, can provide insights into
ultrafast structural dynamics with femtosecond time resolu-
tion448−452 (thus, having the potential to serve as a high-
throughput data source for nonadiabatic simulation bench-
marks), but accurate simulations of ultrafast processes in gas-
phase ion (as compared to neutral) chemistry remain relatively
underexplored.453−455

Molecular benchmarking should rather focus on comparing
the theoretical approximations directly with exact or nearly exact
solutions from theory, an approach that allows full control over
external parameters and ensures a fair comparison. Recognizing
that nearly exact solutionsmay not always be available or feasible
to estimate, we refer to the concept of benchmarking by
comparison. This involves comparing different methods without
an absolute reference point. Even in such cases, we can establish
a theoretical best estimate (TBE): a prediction from a method
that provides the highest level of accuracy in treating
nonadiabatic effects in that system. In this context, it is crucial
that NAMD calculations are properly converged to the limit of
their nuclear basis set or number of trajectories to ensure reliable
comparisons. It is worth noting that TBEs have also been used in
electronic structure benchmarks and have been updated
progressively over time.34,456,457

Using consistent electronic structure methods and equivalent
initial conditions for comparing NAMD methods is generally
less contentious as an idea, but the practical implementation
poses challenges. We have thoroughly discussed these complex-
ities to address all underlying nuances. The systems of interest
should avoid prohibitively expensive electronic structure, so as
to allow the sufficient convergence of dynamics results,
especially for the more computationally demanding approaches.
Full dimensional LVC models, which require modest computa-
tional resources, may serve as a suitable testing ground for a wide
range of methods, particularly in cases like internal conversion
and intersystem crossing in NRR, which do not necessarily
involve large-amplitude motions (as in ISO) or bond breaking

Figure 4. Schematic representation of the steps discussed in this
roadmap toward the creation of a benchmark set for NAMD methods
and the future steps planned by the community.
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(as in DIS and ESIPT). The exploration of ISO, DIS, and ESIPT
phenomena requires more efforts on the accurate electronic
structure evaluation. This would involve selecting electronic
structure methods that are affordable, numerically stable, and
widely accessible to the community through preferably software
packages that are free of charge for the scientific community.
Alternatively, one can take advantage of analytical potentials that
have been previously obtained and used in NAMD calculations,
keeping in mind that it is sometimes not straightforward to
transfer a given analytical expressions into the specific form, as
for instance a sum-of-products form.
In the generation of initial conditions, using simple

approximations like the sudden approximation and the use of
a harmonic approximation to describe the ground-state potential
could mitigate the complications with initiating different
NAMD methods. Nonetheless, translation between the
adiabatic and diabatic representations of electronic states
requires more meticulous considerations.
Research activities that are currently prioritized involve

testing preliminary molecular systems and phenomena selected
from a short list with strong potential as effective benchmarks. In
this context, “system” refers not only to the molecule itself but
also to its electronic structure representation and the possibility
of calculating relevant observables. Some of the molecular
systems under investigation leverage the advantages of vibronic
coupling potentials. At the same time, others already have
available preconstructed PESs that would also be suitable for
efficient on-the-fly simulations. Following initial scrutiny, the
most promising systems will be selected for benchmarking.
Another ongoing effort involves the creation of a common

online repository. Making research data openly available
encourages wide participation by researchers from the field,
promoting transparency, accessibility, and collaboration. An
accessible online repository will allow storage of essential data
such as input files, all information relevant for reproducibility
and the collection of the results of the benchmarking. Here, the
utilization of data science and machine learning techniques,
which are rapidly advancing and increasingly permeating
chemical and materials sciences, can play a critical role in
supporting and maintaining data repositories. These approaches
enable efficient data curation, analysis, and debugging, and are
especially valuable for integrating data of varying fidelity and
origin, thereby enhancing the robustness and usability of
complex data sets.458

Once the initial set of benchmark systems is finalized and
agreed upon by community members, a common set of initial
conditions will be established and made available in the
repository. Hereby, we recommend entrusting the preparation
of initial conditions to a single dedicated research team, making
sure that all types of NAMD methods are covered
comprehensively. At this stage, establishing standardized input
and output data formats is also anticipated to enhance the
broader usability of the benchmark set. An appropriate
electronic structure method, along with freely available software,
will be selected for on-the-fly dynamics. All necessary quantities,
input data, and (if required) initial wave function files will be
incorporated into the repository. For methods that require
analytical potentials, these will either be sourced from existing
literature or parametrized and shared in the repository.
Additionally, a set of relevant observables will be identified for
each system, chosen to capture and represent the key aspects of
nuclear and electronic dynamics. Comprehensive instructions
and materials detailing the calculation of these observables will

be provided to ensure consistent evaluation across all NAMD
simulations. Additionally, it could be useful to standardize the
tools used for postprocessing and analysis of NAMD data.
Selecting a dedicated Python framework459 (or equivalent)
would ensure consistency in analyzing observables, trajectory-
based statistics, and error quantification, streamlining testing
workflows, and promoting transparency across different
benchmarking studies. The selection of initial conditions, of
the electronic structure method and of the relevant observables
will be performed in parallel, as indicated in the roadmap of
Figure 4, ultimately converging in the creation of a repository.
Using the system information gathered in the repository, all

researchers interested in participating in the benchmarking
effort can test their NAMD methodologies and software on the
designated test-set. This benchmarking initiative aims to engage
researchers with diverse expertise, encompassing the full range
of NAMD methods, from trajectory-based approaches to
quantum wavepacket-propagation techniques and quantum-
computing approaches. This diversity is particularly desired in
the realm of benchmarking by comparison, as each method should
ideally be leveraged to its utmost potential, using the optimal
choice of parameters associated with best practices for each
NAMD approach. The calculated results, along with the best
practice procedures, are expected to be published in conven-
tional research articles as well as the data shared through the
repository − ensuring that benchmarks remain valuable long-
term resources. The benchmarking results will be evaluated by
the community members during a collective meeting. Based on
the data, the goal is to assess the quality of different NAMD
approaches for various molecular groups. Additionally, guide-
lines will be introduced for future NAMDmethod development,
defining standardized tests and expected results to evaluate the
performance of new methods.
In the long run, we foresee a continuous refinement of

molecular benchmarks aligned with the ongoing advancements
in the field that invariably present new challenges.More complex
features will be gradually introduced, and likewise, benchmarks
will be expanded to include complex systems and phenomena.
This covers, for example, molecules in realistic environments
(such as solvents, surfaces and materials),460−464 an explicit
treatment of light-matter interactions,376 high density of states,
and long dynamics. The utilization of machine learning
approaches in these efforts has shown great promise in
significantly reducing computational cost without compromis-
ing numerical accuracy, as clearly demonstrated by early studies
in the field.364,465,466 Finally, a synergistic approach that
integrates theory and experiment (within the context of
benchmarking) will inevitably emerge as a key task for the
broader NAMD community.
Alongside this roadmap, which serves as an initial effort to

disseminate our thoughts about benchmarking methods for
NAMD, we aim at promoting the broader participation from
community members beyond the present core group of
contributors, as well as organizing regular meetings and progress
reports to ensure the successful accomplishment of the plan.
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Bosǩovic ́ Institute, 10000 Zagreb, Croatia; orcid.org/
0000-0002-5589-9776; Email: antonio.prlj@irb.hr

Authors
Léon L. E. Cigrang − Department of Chemistry, University
College London, WC1H 0AJ London, United Kingdom;
orcid.org/0009-0004-8118-5699

Basile F. E. Curchod − Centre for Computational Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS,
United Kingdom

Rebecca A. Ingle − Department of Chemistry, University
College London, WC1H 0AJ London, United Kingdom;
orcid.org/0000-0002-0566-3407

Aaron Kelly − Hamburg Center for Ultrafast Imaging,
Universität Hamburg and Max Planck Institute for the
Structure and Dynamics of Matter, 22761Hamburg, Germany

Jonathan R. Mannouch − Hamburg Center for Ultrafast
Imaging, Universität Hamburg and Max Planck Institute for
the Structure and Dynamics of Matter, 22761 Hamburg,
Germany; orcid.org/0000-0003-3090-8987

Davide Accomasso − Faculty of Chemistry, University of
Warsaw, Warsaw 00-927, Poland; Department of Industrial
Chemistry, University of Bologna, Bologna 40126, Italy;
orcid.org/0000-0002-4100-4679

Alexander Alijah − Groupe de Spectrométrie Moléculaire et
Atmosphérique, GSMA, UMR CNRS 7331, Université de
Reims Champagne-Ardenne, U.F.R. Sciences Exactes et
Naturelles, 51687 Reims Cedex 2, France; orcid.org/0000-
0002-4915-0558

Mario Barbatti − CNRS, ICR, Aix Marseille University, 13397
Marseille, France; Institut Universitaire de France, 75231
Paris, France; orcid.org/0000-0001-9336-6607

Wiem Chebbi − Laboratoire de Spectroscopie Atomique,
Moléculaire et Applications (LSAMA), University of Tunis El
Manar, 1060 Tunis, Tunisia
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T. J. A.; Centurion, M.; Gühr, M.; Li, R.; Liu, Y.; et al. Simultaneous
observation of nuclear and electronic dynamics by ultrafast electron
diffraction. Science 2020, 368, 885−889.
(428) Yong, H.; Zotev, N.; Ruddock, J. M.; Stankus, B.;
Simmermacher, M.; Carrascosa, A. M.; Du, W.; Goff, N.; Chang, Y.;
Bellshaw, D.; et al. Observation of the molecular response to light upon
photoexcitation. Nat. Commun. 2020, 11, 2157.
(429) Yong, H.; Xu, X.; Ruddock, J.M.; Stankus, B.; Carrascosa, A.M.;
Zotev, N.; Bellshaw, D.; Du, W.; Goff, N.; Chang, Y.; et al. Ultrafast X-
ray scattering offers a structural view of excited-state charge transfer.
Proc. Natl. Acad. Sci. U. S. A. 2021, 118, No. e2021714118.
(430) Busch, G. E.; Rentzepis, P. M. Picosecond Chemistry. Science
1976, 194, 276−283.
(431) Khalil, M.; Marcus, M. A.; Smeigh, A. L.; McCusker, J. K.;
Chong, H. H. W.; Schoenlein, R. W. Picosecond X-ray Absorption
Spectroscopy of a Photoinduced Iron(II) Spin Crossover Reaction in
Solution. J. Phys. Chem. A 2006, 110, 38−44.
(432) Gawelda, W.; Pham, V.-T.; Benfatto, M.; Zaushitsyn, Y.; Kaiser,
M.; Grolimund, D.; Johnson, S. L.; Abela, R.; Hauser, A.; Bressler, C.;
Chergui, M. Structure Determination of a Short-Lived Excited Iron(II)
Complex by by Picosecond X-Ray Absorption Spectroscopy. Phys. Rev.
Lett. 2007, 98, No. 057401.
(433) Mayer, D.; Lever, F.; Picconi, D.; Metje, J.; Alisauskas, S.;
Calegari, F.; Düsterer, S.; Ehlert, C.; Feifel, R.; Niebuhr, M.; et al.
Following excited-state chemical shifts in molecular ultrafast x-ray
photoelectron spectroscopy. Nat. Commun. 2022, 13, 198.
(434) Kuhs, C. T.; Luther, B. M.; Krummel, A. T. Recent Advances in
2D IR Spectroscopy Driven by Advances in Ultrafast Technology. IEEE
J. Sel. Top. Quantum Electron. 2019, 25, 3100313.
(435) de Oliveira, H. J. S.; de Almeida, P. L., Jr; Sampaio, B. A.;
Fernandes, J. P. A.; Pessoa-Neto, O. D.; de Lima, E. A.; de Almeida, L. F.
A handheld smartphone-controlled spectrophotometer based on hue to
wavelength conversion for molecular absorption and emission
measurements. Sens. Actuators B: Chem. 2017, 238, 1084−1091.
(436) Grasse, E. K.; Torcasio, M. H.; Smith, A. W. Teaching UV-Vis
Spectroscopy with a 3D-Printable Smartphone Spectrophotometer. J.
Chem. Educ. 2016, 93, 146−151.
(437) Baker, M. Is there a reproducibility crisis? Nature 2016, 533,
452−454.
(438) Major, G. H.; Avval, T. G.; Moeini, B.; Pinto, G.; Shah, D.; Jain,
V.; Carver, V.; Skinner, W.; Gengenbach, T. R.; Easton, C. D.; et al.
Assessment of the frequency and nature of erroneous x-ray photo-
electron spectroscopy analyses in the scientific literature. J. Vac. Sci.
Technol. A 2020, 38, No. 061204.
(439) Baer, D. R.; Gilmore, I. S. Responding to the growing issue of
research reproducibility. J. Vac. Sci. Technol. A 2018, 36, No. 068502.
(440) Pinder, J. W.; Major, G. H.; Baer, D. R.; Terry, J.; Whitten, J. E.;
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