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Simulating open-system molecular dynamics on analog quantum computers

Vanessa C. Olaya-Agudelo ,1,* Ben Stewart ,1,* Christophe H. Valahu ,2,3,4 Ryan J. MacDonell ,3,5

Maverick J. Millican,2,3 Vassili G. Matsos,2,3 Frank Scuccimarra ,2,3 Ting Rei Tan ,2,3,4 and Ivan Kassal 1,3,4,†

1School of Chemistry, University of Sydney, New South Wales 2006, Australia
2School of Physics, University of Sydney, New South Wales 2006, Australia

3ARC Centre of Excellence for Engineered Quantum Systems, University of Sydney, New South Wales 2006, Australia
4Sydney Nano Institute, University of Sydney, New South Wales 2006, Australia

5Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada

(Received 18 October 2024; accepted 11 May 2025; published 2 June 2025)

Interactions of molecules with their environment influence the course and outcome of almost all chemical
reactions. However, classical computers struggle to accurately simulate complicated molecule-environment
interactions because of the steep growth of computational resources with both molecule size and environment
complexity. Therefore, many quantum-chemical simulations are restricted to isolated molecules, whose dynam-
ics can dramatically differ from what happens in an environment. Here, we show that analog quantum simulators
can simulate open molecular systems by using the native dissipation of the simulator and injecting additional
controllable dissipation. By exploiting the native dissipation to simulate the molecular dissipation—rather than
seeing it as a limitation—our approach enables longer simulations of open systems than are possible for closed
systems. In particular, we show that trapped-ion simulators using a mixed qudit-boson (MQB) encoding could
simulate molecules in a wide range of condensed phases by implementing widely used dissipative processes
within the Lindblad formalism, including pure dephasing and both electronic and vibrational relaxation. The
MQB open-system simulations require significantly fewer additional quantum resources compared to both
classical and digital quantum approaches.

DOI: 10.1103/PhysRevResearch.7.023215

Most molecular dynamics is governed by interactions be-
tween molecules and their surroundings. With the exception
of molecules in vacuum or dilute gas, chemistry occurs in
environments—from solvents to crystals to proteins—which
decohere the molecule’s quantum state and can transfer
energy to and from the molecule. Molecular dynamics in con-
densed phase can differ completely from that in the isolated
molecule because molecule-solvent interactions can induce
processes such as nonadiabatic transitions, charge transfer,
and barrier crossing [1].

Accurate simulations of an isolated molecule’s quantum
dynamics are challenging on conventional computers due to
the exponential growth of the Hilbert space with molecular
size. Extending such simulations to an open-system treatment
is even more difficult and usually prohibitive, as it often in-
volves representing the molecule’s mixed state with a density
matrix. These limitations have constrained the most accurate
open-system simulation methods to small molecules [2–7].

Quantum computers promise to simulate molecular quan-
tum dynamics efficiently (in polynomial time in system size),
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but, like classical computers, usually require more resources
to simulate open systems. Quantum computers can outper-
form classical ones by encoding the molecular quantum states
on an inherently quantum platform [8–11]. Nevertheless,
current quantum algorithms for simulating open-system dy-
namics require more quantum resources (such as qubits and
operations), making them prohibitively expensive for current
quantum hardware. Two broad approaches have been pursued
for representing system-bath interactions on quantum com-
puters. In the first, additional qubits are added to represent
the environment [12–15]. In the other, intrinsic noise of the
quantum device is used to mimic the environment [16,17].
However, when the intrinsic noise does not directly corre-
spond to the desired dissipative process [16]—as is the case
when qubit-based computers are used to simulate bosonic
modes—using the intrinsic noise may be either impossible
or require additional resources (whether qubits or gates) to
transform the intrinsic noise into the desired form [17]. Hy-
brid approaches are also possible, which combine intrinsic
noise on ancilla registers representing an environment [18,19].
Therefore, in both approaches, and especially when sim-
ulating systems that cannot be directly mapped to qubits,
considerable additional quantum resources are generally re-
quired to transform a closed-system quantum simulation into
an open one.

Analog quantum simulators using bosonic degrees of free-
dom promise to simulate molecular quantum dynamics with
even fewer resources than digital quantum computers. An
analog simulator is a purpose-built device whose Hamiltonian
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can be engineered to match that of the simulated system,
so that the simulator’s time evolution reproduces the de-
sired dynamics. For molecular simulations, analog simulators
based on the mixed-qudit-boson (MQB) encoding represent
molecular electronic and vibrational degrees of freedom using
the qudit and bosonic modes of a trapped ion or a circuit
quantum electrodynamics (cQED) system [20]. Using bosonic
degrees of freedom to simulate nuclear motions—instead of
encoding them in many qubits—reduces the quantum resource
requirements by about an order of magnitude compared to
qubit-based digital quantum simulation [20]. Experimental
demonstrations of MQB simulation include simulations of
conical intersections [21–23] and vibronic spectra [24].

However, MQB simulations of molecular dynamics have
not been fully generalized to open-system dynamics, with ex-
isting proposals limited to vibrational dissipation in trapped-
ion devices [20]. Other theoretical [25–27] and experimental
[28–31] works on the quantum simulation of energy or charge
transfer problems used bosonic degrees of freedom in open-
system analog simulations, but were restricted to only some
noise mechanisms or were not applicable to molecular quan-
tum dynamics because bosonic modes were used only to
represent the environment, not the system of interest.

Here, we present a framework for simulating open-system
molecular dynamics with an MQB simulator. Our approach
has two significant strengths. First, the dissipation can be
engineered using both native dissipation and injected control-
lable dissipation, on both the qudit and the bosonic modes,
so that chemical dissipative processes can be easily mapped
onto the MQB simulator. Doing so turns decoherence mecha-
nisms that usually limit analog simulations into a resource that
makes the simulations more powerful. Second, engineering
the dissipative processes requires few additional resources,
whose number is often independent of the molecular size.
In particular, we show how chemically relevant dissipative
processes—including both electronic and vibrational relax-
ation and dephasing—can be implemented with existing
trapped-ion technology. Overall, MQB simulators can solve
the harder problem of open-system simulation with minimal
overhead and with greater resistance to errors.

I. MOLECULAR OPEN-SYSTEM DYNAMICS

There are many approaches to modeling open molecu-
lar systems, depending on where the molecule-environment
boundary is drawn and what techniques are used to simu-
late either the molecule, the environment, or their interaction
[1,32]. In all cases, open-system simulations aim to simulate
the environment using a simpler method than that used for the
molecule itself. The approaches to simulating the environment
range from ones that explicitly describe the components of
the environment, often at considerable computational cost, to
those that treat either the environment or its influence on the
molecule in an effective way.

A logical starting point for developing analog open-system
approaches is the Lindblad master equation [33,34], the most
general completely positive and trace-preserving Markovian
master equation. It describes the dynamics of the molecule’s

reduced density matrix ρ (we set h̄ = 1 throughout) by

dρ

dt
= −i[Hmol, ρ] +

∑
i

γ mol
i D[Li]ρ, (1)

where Hmol is the Hamiltonian of the isolated molecule, which
can be specified in any form, including as a vibronic coupling
(VC) model [20,35] [for example, see the VC Hamiltonian in
Eq. (4)]. Each dissipative superoperator D[Li] with rate γ mol

i
acts on ρ as

D[Li]ρ = LiρL†
i − 1

2 {L†
i Li, ρ}, (2)

describing a dissipative process by a Lindblad operator Li.
In chemical contexts, there are usually four dominant

dissipation mechanisms, which can be derived from micro-
scopic principles. Equation (1) is usually derived from the
related Redfield master equation, which is obtained from a
perturbative treatment of the system-environment coupling in
the Markovian limit [1,32]. A Redfield equation is usually
converted to a Lindblad equation by making the secular ap-
proximation [1,32,34], which is valid when the timescales of
interest are slower than any rapidly oscillating terms in the
master equation, allowing them to average out. In the secu-
lar limit, population relaxation and pure dephasing become
decoupled [1,32], making it possible to classify the most im-
portant dissipative processes in open chemical systems. With
typical timescales given in Fig. 1, they are

(1) Radiative electronic relaxation is the decay of excited
electronic populations by spontaneous emission, including
both fluorescence and phosphorescence. It is described by the
dissipator D[|n〉 〈m|] and rate γ mol

nm for electronic states with
energies εm > εn. Nonradiative electronic relaxation, such as
intersystem crossing and internal conversion, are indirect con-
sequences of vibrational relaxation and vibronic coupling,
meaning that they are accounted for by the processes below.

(2) Vibrational heating and cooling are the gain and loss
of energy in molecular vibrational modes, and are the most
important way for a molecule to reach equilibrium with a
thermal environment. For mode j, heating and cooling have
dissipators D[a†

j ] and D[a j], with rates γ mol
+, j and γ mol

−, j , respec-
tively. Detailed balance at temperature T mol requires γ mol

+, j =
γ mol

−, j exp(−νmol
j /kBT mol) for mode frequency νmol

j .
(3) Electronic pure dephasing is the reduction in phase

coherence between electronic eigenstates, described by the
dissipator D[|n〉 〈n|] and rate γ mol

e,n for electronic state n.
(4) Vibrational pure dephasing is the decay of phase co-

herence between vibrational states, described by the dissipator
D[a†

j a j] and rate γ mol
v, j for vibrational mode j.

II. ANALOG OPEN-SYSTEM SIMULATION

An analog simulator evolves in time in the same way as the
molecule being simulated, so that the molecule’s dynamics
can be retrieved by measuring the simulator evolution. To
achieve this, the molecular Hamiltonian Hmol must be mapped
onto the controllable simulator Hamiltonian H sim. To allow
for a change of time scales, the mapping may include a scaling
factor F such that H sim = FHmol, where F represents the
ratio of the typical energy scale of the simulator to that of
the molecule. Here, we extend the existing closed-system
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FIG. 1. Typical rates for the most-relevant dissipative processes, (left) in a trapped-ion MQB simulator [24,36–40] and (right) in molecules
in condensed phase (modified from [1]). For both pyrazine [41–43] and triiodide [44] examples, each dissipative rate γ mol

i (and range: gray
highlights) is mapped onto the corresponding trapped-ion rate γ sim

i = Fγ mol
i using the scaling factor F = maxi γ

nat
i /γ mol

i (black arrows). The
maximum ratio is obtained for vibrational pure dephasing for triiodide and vibrational heating for pyrazine; therefore, no injection is required
for these types of dissipation. Other dissipative processes require injected rates γ

inj
i (coloured arrows) to ensure that γ sim

i = γ nat
i + γ

inj
i .

simulation approach to open-system ones and, by consider-
ing how this change affects the possible values of F , show
that there is always a performance advantage in open-system
simulations compared to closed ones.

For open-system simulations, two sources of dissipation
can be used by the simulator: native uncontrollable dissipation
and injected controllable dissipation. Native dissipation is in-
trinsic, always present in the simulator, and cannot be tuned.
Conversely, injected dissipation consists of processes that can
be engineered. Native dissipation is often considered to be
a hindrance in quantum systems, but, in analog simulations,
it can be a valuable tool for open-system simulations that
extends the possible duration of simulations.

Native dissipation can be useful in an analog simulation
if it contains a significant component that is Markovian and
stable. Fortunately, as in molecules, dominant dissipative pro-
cesses in analog hardware are usually well described using
Lindblad dissipators, D[Lnat

i ], with corresponding rates, γ nat
i

[45]. Indeed, if the coupling to the environment is weak and
the secular approximation holds, the same four dissipative
processes that are dominant in molecules will be dominant
in the simulator. We assume that the simulator’s dissipation
rates are stable, i.e., that they can be measured in a prelimi-
nary experiment and remain constant throughout subsequent
simulations. Stability is manageable because it only requires
the dissipation to be stable over several runs of an experiment
before it can be calibrated again.

We then refer to native dissipators D[Lnat
i ] as usable if they

implement a desired molecular dissipator D[Li]. In contrast,
unusable dissipation includes all native dissipators that have
no analog in the molecule, as well as processes that cannot
be described by the Lindblad formalism (e.g., non-Markovian
ones).

A molecular dissipator, D[Li], can be simulated on the
analog simulator by ensuring that its dissipation rate is related

to the corresponding molecular rate by the same scaling factor
F as above, γ sim

i = Fγ mol
i . This condition can be met by

using native dissipation with rate γ nat
i and injecting additional

dissipation of the same type at rate γ
inj
i that satisfies

γ sim
i = γ nat

i + γ
inj
i = Fγ mol

i . (3)

For a closed-system simulation, F can be chosen within
hardware constraints, F ∈ [F cs

min, F cs
max] (“cs” for closed sys-

tem). The lower bound, F cs
min = tmol/τ

cs
d , is set by the ratio of

the desired total simulation time in the molecule, tmol, to the
coherence time of the simulator, τ cs

d , after which the simulator
is deemed insufficiently reliable. The upper bound, F cs

max, is
the ratio of the maximum simulator interaction that can be
engineered in H sim and the largest interaction of that type in
Hmol. Consequently, the longest molecular time that can be
simulated on the specific hardware is t cs

max = τ cs
d F cs

max.
Including dissipation gives a new range of F for open-

system simulation, F ∈ [F os
min, F os

max] (“os” for open system).
F os

max remains set by the hardware capabilities and is therefore
unchanged, F os

max = F cs
max. By contrast, F os

min must now meet two
conditions. First, as in the closed simulation, F is constrained
by the open-system coherence time τ os

d of the simulator,
F � tmol/τ

os
d . Because some dissipation is used in the simu-

lation and τ os
d is determined only by the unused dissipation,

τ os
d > τ cs

d , giving an improvement over the closed-system
case. Second, because all γ

inj
i must be positive, Eq. (3)

requires that Fγ mol
i � γ nat

i for all i, that is, F � R =
maxi γ

nat
i /γ mol

i . Overall, the lower bound for the open-system
simulation is F os

min = max(tmol/τ
os
d , R).

Importantly, using some of the native noise in the
simulation always extends the maximum simulation dura-
tion. The longest possible open-system simulated time is
tos
max = τ os

d F os
max = τ os

d F cs
max; because τ os

d > τ cs
d , we find that

tos
max > t cs

max. Therefore, any hardware that can be used for
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closed-system simulation can achieve a longer simulated time
when used for open-system simulation.

If F os
min = R, then the F that maximizes the use of native

dissipation and minimizes injected dissipation is F = F os
min;

doing so means that no injected dissipation is required for the
process with the maximum ratio γ nat

i /γ mol
i (see Sec. V for two

examples).

III. CLOSED-SYSTEM MQB SIMULATION

MQB simulators [20] are examples of analog quantum
simulators, in which the molecular electronic and vibrational
degrees of freedom are encoded in a qudit and multiple
bosonic modes of the simulator. In a trapped-ion MQB im-
plementation, the qudit is encoded in the electronic states of
one of the ions, while the bosonic modes correspond to the
collective normal modes of motion (vibrational modes) of
the ion chain. MQB simulators are programmable because
all parameters—including the energies of all states and the
couplings between degrees of freedom—can be controllably
adjusted using light-matter interactions [20].

The quantum resources required for an MQB simulation
scale linearly with molecule size [20]. A chain of N trapped
ions contains 3N vibrational modes, meaning that a molecule
with d electronic states and N vibrational modes can be
mapped onto a single qudit in a chain of �N/3� ions.

The MQB approach implements vibronic-coupling Hamil-
tonians that are expressed as power series in the vibronic
couplings [20]. The linear vibronic coupling (LVC) Hamilto-
nian, where the electronic and vibrational degrees of freedom
are linearly coupled [20], is

Hmol =
∑

j

νmol
j a†

j a j +
∑
n,m

c(n,m)
0 |n〉 〈m|

+
∑

n

∑
j∈t

c(n)
j√
2

(a†
j + a j ) |n〉 〈n|

+
∑
n �=m

∑
j∈c

c(n,m)
j√

2
(a†

j + a j ) |n〉 〈m| , (4)

where |n〉 are the electronic states and aj are the annihilation
operators of the molecular vibrations, such that Qj = (a†

j +
a j )/

√
2 is the dimensionless position of the jth mode. The

constants c(n,n)
0 are the electronic energies, c(n,m)

0 (n �= m) are
the interstate couplings, and c(n)

j and c(n,m)
j are the vibronic

(vibrational-electronic) couplings for, respectively, the tuning
( j ∈ t) and the coupling ( j ∈ c) modes. Parametrizing Eq. (4)
requires carrying out an electronic-structure calculation in
advance [20]. Higher-order vibronic-coupling terms could be
readily included in Hmol.

The molecular Hamiltonian, Hmol, can be directly encoded
on a trapped-ion simulator. The mapping begins with the
Hamiltonian of a chain of N ions [45],

H ion =
3N∑
j=1

ν ja
†
j a j + 1

2

d−1∑
n=0

ωn |n〉 〈n| , (5)

where the vibrational mode j has frequency ν j and ωn is the
frequency of the nth electronic state relative to |0〉, the lowest
state used in the simulation.

The remaining terms in Hmol are simulated by adding
light-matter interactions that induce couplings in the simu-
lator [20]. These interactions can be implemented through
stimulated Raman transitions using pairs of noncopropagating
laser beams that are both approximately detuned by � from
an electronic excited state |e〉 outside of the qudit [45–47].
The frequency difference between the two Raman beams,
�ωL, can be tuned to implement all the necessary interactions:
electronic coupling, vibronic tuning, and vibronic coupling.

Electronic coupling between states |n〉 and |m〉 is im-
plemented by setting �ωL = (ωm − ωn) + (χm − χn), where
χm − χn is a frequency shift relative to the electronic tran-
sition. In the interaction picture with respect to Eq. (5) and
after a rotating wave approximation, the electronic coupling
Hamiltonian between states |n〉 and |m〉 is [45,47]

H ion
e,n,m = 
n,m |n〉 〈m| e−i(χm−χn )t + h.c., (6)

with interaction strength 
n,m = g∗
n,e,Agm,e,B/2�, which can

be adjusted by varying either the detuning � or the intensity-
dependent light-matter couplings g∗

n,e,A and gm,e,B of the
beams coupling |n〉 to |e〉 and |m〉 to |e〉, respectively.

Vibronic tuning for state |n〉 is implemented by setting
�ωL close to the frequency of a vibrational mode j (�ωL =
ν j − δ j), which, in the interaction picture with respect to
Eq. (5) and after a rotating wave approximation, gives [46,47]

H ion
t,n = �′

n, j (a
†
j e

−iδ j t + a je
iδ j t ) |n〉 〈n| , (7)

where �′
n, j = ηg∗

n,A, jgn,B, j/� is an AC Stark shift with η the
Lamb-Dicke parameter. �′

n, j can be adjusted by varying either
the detuning � or the intensity-dependent couplings gn,A, j and
gn,B, j . We have omitted a Stark shift term from Eq. (7), which
can be made vanishingly small by choosing appropriate laser
parameters [48,49].

Finally, vibronic coupling between states |n〉 and |m〉
requires that one of the Raman beams be bichromatic and con-
tain two frequency tones of equal amplitude. The frequency
differences between each bichromatic tone and the other Ra-
man beam are �ω±

L = (ωm − ωn) ± (ν j + δ j ) + (χm − χn).
This interaction (akin to a Mølmer-Sørensen interaction [50]),
in the interaction picture with respect to Eq. (5) and after a
rotating wave approximation, gives the coupling Hamiltonian
[47,50]

H ion
c,n,m =
′

n,m, j (a
†
j e

−iδ j t + a je
iδ j t )

× (|n〉 〈m| e−i(χm−χn )t + h.c.), (8)

with 
′
n,m, j = ηg∗

n,m,A, jgn,m,B, j/2�, where gn,m,A, j is the light-
matter coupling of the monochromatic Raman beam and
gn,m,B, j is the light-matter coupling of both tones in the bichro-
matic Raman beam. 
′

n,m, j can then be adjusted by varying
either �, gn,m,A, j or gn,m,B, j .

The electronic-coupling, vibronic-tuning, and vibronic-
coupling Hamiltonians can be added for any modes and
any electronic states by introducing interactions as de-
scribed above. For N ions and d electronic states, and
after moving to a further interaction picture with respect to
H = ∑3N

j=1 δ ja
†
j a j + ∑d−1

n=0 χn |n〉 〈n|, the overall simulator
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FIG. 2. Injecting the four molecular Lindblad dissipators into a trapped-ion MQB simulator. (a) Optical pumping to control the radiative
electronic relaxation from |m〉 to |n〉. The |m〉 population is pumped (pink solid arrow) to an auxiliary state |l〉, chosen for its rapid spontaneous
decay (wavy arrows) back to |n〉 and |m〉. The population at |m〉 effectively decays to |n〉 (pink dashed arrow) with rate γ inj

nm . (b) Resolved
sideband interactions applied to an ancilla ion (A) injecting vibrational heating and cooling. A bichromatic laser with coupling strengths 
±
(red and blue arrows) and detunings � = ±ν j changes the vibrational state from |i〉 to |i ± 1〉. This is followed by an electronic decay from |q〉A

to |p〉A at a rate �A
pq (wavy arrows), without affecting the vibrational state. (c) Injection of vibrational pure dephasing. A noisy trap electrode or

targeted laser field induces fluctuations in the jth vibrational mode potential strength (blue dotted potentials), which in turn induce fluctuations
�δ j (t ) in the mode’s energy levels (small blue arrows). (d) Injection of electronic pure dephasing. A noisy magnetic field or targeted laser field
induces fluctuations �χn(t ) in the electronic energy level |n〉 (green dotted potentials).

Hamiltonian becomes

H sim =
3N∑
j=1

δ ja
†
j a j +

d−1∑
n=0

χn |n〉 〈n| +
∑
n �=m


n,m |n〉 〈m|

+
∑

n

∑
j∈t

�′
n, j (a

†
j + a j ) |n〉 〈n|

+
∑
n �=m

∑
j∈c


′
n,m, j (a

†
j + a j ) |n〉 〈m| . (9)

H sim is a direct mapping of the molecular Hamiltonian of
Eq. (4). The simulator is fully programmable: the parameters
of Eq. (9)—δ j , χn, 
n,m, �′

n, j , and 
′
n,m, j—can be tuned

independently by adjusting suitable laser parameters, such as
the intensity or frequency [20].

The scaling factor F for molecular simulations on ion traps
is typically between F cs

min ∼ 10−12 and F cs
max ∼ 10−10 (fixed

by the maximum achievable laser power for Raman interac-
tions), the ratio between molecular femtosecond timescales
and trapped-ion millisecond timescales. The slower ion-trap
dynamics, combined with the submicrosecond timing res-
olution of trapped-ion simulators, means that greater time
resolution is available on an MQB simulator than in direct
spectroscopic experiments on a molecule [21]. The long co-
herence times in trapped-ion systems allow the simulation of
chemical dynamics for hundreds of picoseconds [24], which
is sufficient to observe ultrafast photochemical dynamics.

IV. OPEN-SYSTEM MQB SIMULATION ON ION TRAPS

Each chemical dissipator listed in Sec. I can be engineered
on a trapped-ion MQB simulator, using a combination of

light-matter interactions and various types of noise injection
(summarised in Fig. 1). For each case, we derive a rate for the
injected dissipation, which we show to be fully controllable,
allowing one to tune the simulator dissipator rates of Eq. (3).

A. Radiative electronic relaxation

In an MQB architecture, radiative electronic relaxation
corresponds to the native spontaneous decay of an excited
state |m〉 to a lower state |n〉 at a rate �nm. This is a native
dissipative process with Lindblad operator Li = |n〉 〈m| and
rate γ nat

nm = �nm.
When the native �nm is insufficient to map the radiative

electronic relaxation rate of the molecule, optical pumping
[51]—a common technique used in operations such as laser
cooling [52], dissipative quantum state preparation [53], and
measurement [54]—can artificially decrease the lifetime of a
given excited state. The procedure is depicted in Fig. 2(a) and
involves driving a transition from |m〉 to an auxiliary high-
lying electronic state |l〉 that can decay to |n〉 with �nl > �nm.
The driving is achieved using a laser with interaction strength

ml and frequency ωext, which is detuned from the electronic
transition by �ml = ωext − (ωl − ωm). The population in |l〉
decays to |n〉 and |m〉 with rates �nl and �ml , respectively. The
population that returns to |m〉 repeats the optical-pumping cy-
cle until it is completely transferred to |n〉. The state |l〉 can be
adiabatically eliminated from the dynamics when �nl � 
ml ,
resulting in an effective decay rate [55]

γ inj
nm = 
2

ml

(�nl + �ml )2 + 4�2
ml

�nl . (10)

γ
inj
nm can be tuned over a wide range by varying the laser

properties 
ml and �ml .
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Photon scattering during optical pumping imparts momen-
tum kicks to the ions that can heat the vibrational modes.
However, this heating rate is negligible in practice, being
quadratic in the Lamb-Dicke parameter η, γ+ = �′

nmη2 [56].
Typical values �′

nm ≈ 0.02 s−1 and η = 0.1 give γ+ = 2 ×
10−4 s−1, which is negligible compared to typical heating rates
in ion traps, which are in the range of 0.1 to 10 s−1 (see Fig. 1).
In any event, what little heating is induced could always be
considered as additional useful heating.

The derivation of Eq. (10) assumes that the population can
only decay from |l〉 to |n〉 or |m〉. If there are dipole-allowed
transitions to other electronic states |m′〉, additional driving
beams can repump the population from |m′〉 back into the
optical pumping cycle [57].

B. Vibrational heating and cooling

Vibrational heating and cooling in a trapped-ion
simulator commonly occur due to electric-field noise.
This dissipation is routinely characterized experimentally
[58,59] and is described by Lindblad dissipators D[a]
and D[a†]. The corresponding rates are approximately
γ nat

+, j = γ nat
−, j exp (−ν j/kBT nat ) ≈ γ nat

−, j , because typical trap
frequencies (ν j/2π ∼ 1 MHz) are much smaller than kBT nat

for T nat between 4 and 300 K. These native rates vary from
0.1 to 1000 quanta/s [38,59,60]. If the native dissipative rates
are insufficient, additional dissipation can be injected.

1. Single-mode heating and cooling

The injection of vibrational heating and cooling was pro-
posed for ion-trap simulators in the original MQB paper [20].
The proposed injection was via resolved-sideband laser in-
teractions, where the desired molecule-environment coupling
and temperature could be controlled by tuning the laser pa-
rameters [20]. However, these laser interactions could change
the ion’s electronic state, disturbing the ongoing coherent
simulation.

To overcome this limitation, a similar dissipation scheme
can be implemented using an ancillary ion that shares the
motion with the MQB qudit ion (i.e., sympathetic cooling
[30,46,61]), without affecting the electronic states of the qu-
dit. Dissipators D[a j] and D[a†

j ] can then be engineered using
a bichromatic laser (one with two frequency tones), interact-
ing with the ancilla ion. The frequency of each tone is set
so that it sympathetically cools or heats a shared vibrational
mode. The ratio of the two tones’ strengths can be adjusted to
simulate a desired environment’s temperature.

Figure 2(b) depicts the electronic transition |p〉A → |q〉A in
the ancillary ion A driven by a bichromatic laser. The interac-
tion strengths are 
− and 
+, with detunings � = −ν j for the
red sideband and � = +ν j for the blue sideband, respectively.
The electronic population decays from |q〉A to |p〉A at rate �A

pq
[this can be due to spontaneous emission or engineered as
in Eq. (10)]. The dynamics of the vibrational mode is then
described by the Lindblad master equation [62,63]:

dρ j

dt
= −i[ν ja

†
j a j, ρ j] + (

γ
inj
+, jD[a†

j ] + γ
inj
−, jD[a j]

)
ρ j, (11)

where ρ j is the reduced density matrix of mode j. In the limit

± � �A

pq (which usually holds in trapped-ion simulators),

the injected dissipation rates depend only on the laser param-
eters [55,62,63]:

γ
inj
±, j = η2

j�
A
pq[B(� ∓ ν j ) + αB(�)], (12)

B(�) = 
2
±(

�A
pq

)2 + 4�2
, (13)

where η j is the Lamb-Dicke parameter and α is an angular
factor (α = 2/5 for dipole transitions [55]).

In molecules, heating and cooling most commonly arise
when the molecule is coupled to a thermal environment.
Simulating a thermal environment requires that the heat-
ing and cooling rates satisfy detailed balance, γ sim

+, j =
γ sim

−, j exp(−ν j/kBT sim ), where T sim = (ν j/ν
mol
j )T mol. In terms

of the injected rates,

γ
inj
+, j = γ

inj
−, jζ

2 − γ nat
−, j (1 − ζ 2), (14)

where ζ 2 = exp(−νmol
j /kBT mol). If, as is the case in good ion

traps, γ nat
−, j � γ

inj
−, j , the Boltzmann factor can be incorporated

into the simulation through the interaction strength of Eq. (12)
by setting 
+ = ζ
−. In other words, the environment tem-
perature T mol can be set by tuning the ratio between the blue-
and red-sideband interaction strengths, while their absolute
value determines the strength of the system-environment cou-
pling.

2. Global vibrational heating and cooling

Using mode-resolved laser interactions as described above
means that the number of required laser interactions scales
linearly with the number of modes, a cost that can be signifi-
cantly reduced if all the heating and cooling rates are similar.
In many cases, the precise spectral density of the environ-
ment is either unknown or unimportant; in those cases, it is
common to assume that the heating rates for all vibrational
modes are equal (and likewise for the cooling rates). In those
cases, where a precise spectral density is not required, similar
heating and cooling rates can be injected for all modes using
a single broadband laser that can heat and cool all modes
simultaneously. According to Eq. (12), this can be achieved
if the laser parameters (�A

pq, 
±, �) and the vibrational fre-
quencies (ν j) are similar for all vibrational modes. A global
laser interaction with a sufficiently broadband spectrum can
target all modes, setting the same values for �A

pq and 
±, as
well as small � for all modes.

C. Electronic and vibrational pure dephasing

Electronic and vibrational dephasing can be injected by in-
ducing classical stochastic fluctuations in the energy levels of
the electronic and vibrational states. The resulting dephasing
rates can be tuned by controlling the variances and correlation
times of the fluctuations.

We consider a fluctuating Hamiltonian proportional to an
arbitrary operator O,

H (t ) = ��(t ) O, (15)

where the fluctuations, ��(t ), are a zero-mean stochastic pro-
cess. To simulate pure dephasing, we consider the ensemble
average of the density matrix 〈ρ〉 over many realisations of
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FIG. 3. Simulating MQB open-system molecular dynamics in an ion trap. The ions (spheres) are trapped in vacuum in a linear chain by
two DC (end caps) and four RF electrodes (triangular blades). The closed-system simulation is achieved using a qudit ion representing the
molecular electronic states (yellow |m〉 and red |n〉 lines) and collective ion vibrational modes (gray spring) representing molecular vibrations.
Vibronic coupling is simulated with a bichromatic laser field (two shades of purple) originating from a single incident laser (gray) modulated
by an AOM. An open-system simulation requires an ancilla ion (A) (which shares vibrational modes with the qudit ion) and controllable
implementations of the four Lindblad dissipators: D[|n〉 〈m|] (pink) can be injected via optical pumping; D[aj] (light blue) and D[a†

j ] (red)
can be achieved using blue- and red-sideband interactions; D[|n〉 〈n|] (green), can be injected in two ways: (1) using a noisy detuning (�χn)
in the vibronic-coupling laser or (2) using a noisy current �I to fluctuate the magnetic field (B0 + �B); and D[a†

j a j] (dark blue) can also be
implemented in two ways: (1) using a fluctuating detuning �ν j in the vibronic-coupling laser or (2) using noisy voltages �VRF and �VDC on
the electrodes.

��(t ) [64,65]. This approach reflects experimental quantum
simulations, where expectation values are measured by aver-
aging over many outcomes. The resulting dissipator is [66,67]

D[O]〈ρ〉 = O〈ρ〉O† − 1
2 {O†O, 〈ρ〉}, (16)

with rate γ = 1
2

∫ t
0 〈��(t )��(s)〉 ds, where 〈��(t )��(s)〉

is the autocorrelation function of the fluctuations. For Gaus-
sian, Markovian, and wide-sense stationary noise, the rate
simplifies to [68]

γ = 1
2 〈��(t )2〉τc, (17)

where 〈��(t )2〉 is the variance of the noise and τc � 1/γ is
its correlation time. Either of these quantities can be used to
adjust the dephasing rate.

In the following, we present several ways to inject stochas-
tic fluctuations into the terms of the simulator Hamiltonian
of Eq. (9), in a way that results in controllable electronic and
vibrational dephasing.

1. Dephasing single modes or electronic levels by noise

Vibrational and electronic pure dephasing can be inde-
pendently engineered by adding frequency fluctuations to
the laser beams that drive the closed-system dynamics. Such
frequency fluctuations can be imprinted on the beams by
frequency modulating the acousto-optical modulator (AOM)

already used for the closed-system simulation (Fig. 3). Thus,
no additional experimental hardware is necessary to inject
pure dephasing.

Vibrational pure dephasing of mode j is implemented by
injecting frequency fluctuations into both vibronic Hamil-
tonians of Eqs. (7) and (8), with the replacement δ j →
δ j + �δ j (t ). Electronic pure dephasing of qudit levels n and
m requires adding frequency fluctuations to the coupling
Hamiltonians of Eqs. (8) and (6), with the replacements
χn → χn + �χn(t ) and χm → χm + �χm(t ). To this end,
we modify the frequency differences of the Raman beams
as follows. For the vibronic tuning interaction, we set
�ωL = ν j − (δ j + �δ j (t )). For the vibronic coupling in-
teraction, we set �ω±

L = (ωm − ωn) ± (ν + δ j + �δ j (t )) +
(χm + �χm(t )) − (χn − �χn(t )). For the electronic coupling
interaction, we set �ωL = (ωm − ωn) + (χm + �χm(t )) −
(χn + �χn(t )). Moving to an interaction picture with these
detunings, the simulation Hamiltonian becomes

H sim =
3N∑
j=1

(δ j + �δ j (t ))a†
j a j

+
d−1∑
n=0

(χn + �χn(t )) |n〉 〈n| +
∑
n �=m


′
n,m |n〉 〈m|
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+
∑

n

∑
j∈t

�′
n, j (a

†
j + a j ) |n〉 〈n|

+
∑
n �=m

∑
j∈c


′
n,m, j (a

†
j + a j ) |n〉 〈m| . (18)

H sim contains stochastic terms of the form in Eq. (15), from
which we can retrieve the induced dephasing rates. Vibra-
tional dephasing for mode j is obtained by setting O = a†

j a j

and ��(t ) = �δ(t ), resulting in rate γ
inj
v, j = 〈�δ j (t )2〉τc/2.

Similarly, electronic dephasing involving qudit level n is ob-
tained by setting O = |n〉 〈n| and ��(t ) = �χn(t ), resulting
in rate γ

inj
e,n = 〈�χn(t )2〉τc/2. The total electronic dephasing

rate between levels n and m is then γ
inj
nm = γ

inj
e,n + γ

inj
e,m. Because

the magnitudes of the fluctuations and their correlation times
are independently controlled, the dephasing rate of each mode
and electronic level is independently programmable.

When engineering dephasing, large frequency fluctuations
in the laser fields may cause unwanted off-resonant couplings
to other vibrational modes. These couplings can be minimized
by increasing τc, which leads to a smaller variance of the
noise, or by choosing ion trap parameters which increase the
frequency spacings between the vibrational modes.

2. Global electronic dephasing by magnetic field fluctuations

A simplified injection of electronic pure dephasing can be
implemented if all electronic states involved in the simula-
tion are affected by global stochastic frequency fluctuations,
creating similar pure dephasing rates. As in Sec. IV B 2, this
scheme can be used to simulate open systems for which there
is not enough information about the pure dephasing rate of
each electronic state. Assuming that different electronic states
experience similar pure dephasing rates can be a satisfactory
approximation in these cases.

Global dephasing can be implemented using fluctuating
magnetic fields �B, which alter the energies of magnetically
sensitive electronic states. To first order in �B, the fluctuation
in the nth electronic energy is [45]

�ωn =
(

dωn

dB

)
B0

�B, (19)

where (dωn/dB)B0 is the sensitivity at the average field B0.
The fluctuation �B can be engineered using a noisy current
�I in the magnetic field source, such that �B = (dB/dI )�I .
For cylindrical solenoids, the typical source of magnetic fields
in ion traps, dB/dI = Cμ0/L, where C is the number of
windings, L is the length of the solenoid, and μ0 is the vac-
uum permeability. Using Eq. (19), Eq. (17) gives the injected
dephasing rate,

γ inj
e,n = 1

2

(
dωn

dB

dB

dI

)2

〈�I2〉τc. (20)

For these rates to be similar, one needs to find electronic states
with similar dωn/dB. For states that are linearly sensitive to
the magnetic field, dωn/dB is proportional to the projection of
the total angular momentum onto the quantisation axis (mJ ),
which allows states of similar mJ to be selected as the qudit
states. In particular, hyperfine states within the same angular
momentum manifold experience similar sensitivities [69].

3. Global vibrational dephasing by trapping voltage fluctuations

Similarly to electronic dephasing in the previous section,
the same (or similar) vibrational pure dephasing rates are often
assumed to affect all modes in an open molecule [41–43].
This global dephasing can be implemented by injecting noise
into the strength of the ions’ confining potentials, which con-
trol the vibrational mode frequencies. This injection can be
achieved by inducing voltage fluctuations in the electrodes
that create the confining electric fields (Fig. 3).

The ions’ vibrational frequencies are determined by the
three-dimensional electric fields produced by the four radio-
frequency (RF) and two static (DC) electrodes (Fig. 3).
The blade electrodes, with RF signal of peak voltage V (0)

RF
produce a radially confining potential (in the xy plane), while
the end caps with DC voltage V 0

DC confine the ions axially
(along z). A chain of N ions has 3N vibrational modes, of
which the radial frequencies νr,i are determined by the RF
voltage, while the axial frequencies νz,i are determined by
the DC voltage. One can relate the vibrational frequencies to
the center-of-mass frequencies νr,0 and νz,0 using geometric
factors: νr,i = κr,iνr,0 and νz,i = κz,iνz,0 [45], where κr,i and κz,i

are typically of the same order of magnitude for all i [70].
Small voltage fluctuations change the vibrational frequen-

cies according to the corresponding sensitivities:

�νr,i =
(

dνr,i

dVRF

)
V (0)

RF

(
VRF − V (0)

RF

)
, (21)

�νz,i =
(

dνz,i

dVDC

)
V (0)

DC

(
VDC − V (0)

DC

)
. (22)

We therefore obtain the injected pure dephasing rates,

γ
inj
v,r,i = 1

2
κ2

r,i

(
dνr,

dVRF

)2〈
�V 2

RF

〉
τc, (23)

γ
inj
v,z,i = 1

2
κ2

z,i

(
dνz,0

dVDC

)2〈
�V 2

DC

〉
τc. (24)

Therefore, global pure vibrational dephasing can be imple-
mented if all of the geometric factors κ are sufficiently close
to each other. The variances of the pure dephasing of axial
and radial modes can be separately tuned by varying the am-
plitudes of the DC and RF voltage fluctuations, respectively.

V. EXAMPLES

We apply our method to two well-studied examples of
open-molecular systems: (1) triiodide in a polar solvent and
(2) pyrazine modelled as an LVC system with dissipative
dynamics due to its intramolecular vibrational modes. In both
examples, we use molecular Lindblad dissipation rates deter-
mined in earlier works and map them to equivalent rates in an
experimentally realistic trapped-ion MQB simulator.

Our approach requires predetermined Lindblad dissipation
rates for the open system of interest, which are obtainable
from time-resolved spectroscopy, simulations on classical
computers, or a combination of both. For example, time-
resolved spectroscopic experiments often report population
decay and dephasing times T1 and T2, respectively, for both
electronic states and vibrational modes. The electronic pure
dephasing rate is then given by γ mol

e,n = 1/T2e − 1/2T1e, where
the electronic dephasing time T2e can be obtained from fitting
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TABLE I. Dissipation rates γ mol
i and the corresponding simulated rates γ sim

i = Fγ mol
i in an ion-trap MQB simulator for triiodide in solution

[44] and for a three-mode, two-state pyrazine molecule where the dissipation is due to the other vibrational modes. The “Implementation”
column denotes experimental parameters for implementing γ sim

i .

Triiodide (F = 1.6 × 10−11) Pyrazine (F = 2.6 × 10−11)

Dissipation γ nat
i /s−1 γ mol

i /ps−1 γ sim
i /s−1 Implementation γ mol

i /ps−1 γ sim
i /s−1 Implementation

Elec. relaxation 0 0 0 
ml/2π = 0 0 0 
ml/2π = 0
Vib. cooling 0.20 [21] 0.52 [44] 8.6 η
−/2π = 11 kHz 1.0 [41] 27 η
−/2π = 20 kHz
Vib. heating 0.20 [21] 0.31 [44] 5.0 η
+/2π = 8.5 kHz 0.0077 [41] 0.20 η
+/2π = 0

Vib. dephasing 29 [21] 1.8 [44] 29
√

〈�δ2
j 〉/2π = 0 2.1 [43] 55

√
〈�δ2

j 〉/2π = 2.3 kHz

Elec. dephasing 0.12 [71] 120 [44] 2000
√〈�χ 2

n 〉/2π = 20 kHz 33 [42] 870
√〈�χ 2

n 〉/2π = 13 kHz

the electronic time-dependent spectra [43]. T1e is extracted
from the radiative quantum yield YR = T1eγ

mol
nm [43], where

the radiative electronic relaxation rate is determined by the
strength of the transition dipole moment |m〉 → |n〉 [43].
The analogous vibrational times T2v and T1v—also obtain-
able from time-dependent spectroscopy—determine γ mol

−, j −
γ mol

+, j = 1/T1v and γ mol
v, j = 1/T2v − 1/2T1v [44].

A. Triiodide in a polar solvent

Triiodide gained interest after time-resolved spectroscopic
experiments of its photodissociation dynamics in the con-
densed phase showed the vibrational decoherence effects of
solvents [44,72,73]. In particular, the key role of the symmet-
ric stretch mode ν1 at 112 cm−1 makes it ideal for probing
solvent effects on the dynamics.

The relevant dissipation rates were measured by pumping
the molecule to a dissociative electronic surface and then
monitoring the solvent-induced vibrational dissipation using
time-delayed probe pulses. The resulting spectrum was fitted
to a decaying sine function to obtain the vibrational relaxation
and dephasing times T1v and T2v [44,74]. The electronic de-
phasing rate was also chosen to fit the spectral modulations.
The ranges of the corresponding dissipation rates obtained
for water and ethanol solvents are given in Fig. 1. Radiative
electronic relaxation was not included because it is much
slower than the other processes.

These measured rates can be mapped onto an MQB simula-
tor. Table I shows the average of the dissipative rates in water
and ethanol and gives examples of typical native dissipation
rates γ nat

i for an Yb+ trapped-ion simulator [21,24]. We select
the scaling factor F as described in Sec. II to minimize the in-
jected dissipation. In this example, vibrational pure dephasing
determines F = γ nat

v,r /γ mol
v,1 = 1.6 × 10−11, so that no injection

of this dissipation type would be required. F is then used to
scale the other rates γ sim

i in Table I. Electronic and vibrational
dephasing, occurring on timescales of tens and hundreds of
femtoseconds, respectively, would affect the MQB dynamics
on 1 to 30 ms timescales. Vibrational dissipation would be
mapped from a picosecond in the molecule to 0.1 s in the ion
trap.

All calculated parameters for simulating γ sim
i are within

existing experimental capabilities, for which we have used
representative values from past ion-trap MQB simulations
[20,21,24]. The interaction strength η
−/2π = 11 kHz, and
therefore also the smaller 
+, are well within the range

achievable by tuning the laser power [75]. 
− is calcu-
lated from Eq. (12), using �A

pq/2π = 20 MHz and νx/2π =
1.34 MHz, values reported for an Yb+ ion trap [21]. 
+ is
obtained from the Boltzmann factor using ν1 = 112 cm−1 and
T mol = 300 K [44]. The fluctuations for injecting electronic
dephasing,

√〈�χ2
n 〉/2π = 20 kHz, could be imprinted on the

frequency of each Raman beam using an AOM. The electronic
dephasing rate γ sim

e,n is determined using Eq. (17), where the
correlation time τc must be chosen much smaller than the de-
phasing timescale; we choose τc = 10 µs � 1/γ sim

e,n = 500 µs.
This choice is well within the capabilities of modern control
electronics, which achieves temporal resolutions of 100 ns.

B. Pyrazine

Pyrazine is widely used for studying ultrafast nonadiabatic
dynamics due to the conical intersection between its excited
electronic states [2]. This 24-mode molecule has been suc-
cessfully modelled as an open quantum system in which three
vibrational modes, one coupling (ν10a) and two tuning (ν1

and ν6a), are coupled to the first two excited electronic states,
nπ∗ and ππ∗, while the remaining 21 modes form a weakly
coupled environment that leads to dissipative dynamics [42].

As in the triiodide example, dephasing and relaxation
constants for electronic states and vibrational modes were
retrieved from fitting the experimental absorption spectrum
[3,5,42,43]. Radiative electronic relaxation from ππ∗ to nπ∗
is forbidden and not included. The pure dephasing constant
for the state ππ∗ was T ∗

2,ππ∗ = 30 fs. We assume that the
constants T1v = 1 ps [3,5] and T2v = 320 fs [42] are the same
for all modes.

Using the procedure above, we converted the dissipa-
tion times into the Lindblad rates and mapped them to the
simulator dissipative rates (Table I). In particular, we use the
tuning mode ν1 = 1016 cm−1 to exemplify the Lindblad rates
for the vibrations. In this case, F comes from the vibrational
heating of this tuning mode, F = γ nat

+,r/γ
mol
+,1 = 2.6 × 10−11,

which, along with the ν6a and ν10a modes, would not re-
quire dissipation injection, i.e., 
+ = 0. The other Lindblad
rates are scaled as before, γ sim

i = Fγ mol
i . The experimental

parameters for dissipation injection (including single-mode
schemes) are calculated as in the triiodide example and re-
ported in Table I. In this case, vibrational cooling could also
be implemented globally by targeting the vibrational modes
with one broadband laser interaction, such that the laser
power is adjusted to 
− = 20 kHz. The global vibrational
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dephasing scheme would also be suitable, with fluctuations√〈�ν2
r 〉/2π = 2.3 kHz produced via trapping potential fluc-

tuations �VRF.

VI. DISCUSSION

Our approach extends molecular MQB simulation from
closed systems to open ones, the latter characterized by the
most common set of Lindblad dissipators used in chem-
istry. Dissipation can be included in the simulation using a
combination of native and injected dissipation, an approach
that turns native dissipation into a valuable resource for ana-
log simulation. In addition, injected dissipation, described
for trapped-ion systems, could be readily implemented using
available simulators with few additional hardware modifica-
tions and independently of the molecular size.

Using native noise as a simulation resource diminishes
the common argument that the accumulation of errors makes
analog simulators impractical. Dissipation and decoherence
are the main sources of error in analog devices—quantum
or classical—and limit the simulation time. However, analog
classical simulations were, despite errors, essential for clas-
sical computation before large-scale digital computers [76].
Similarly, successful quantum simulations of closed systems
[21,24] have shown that available decoherence times in analog
quantum simulators are sufficiently low to allow accurate
simulations, up to hundreds of femtoseconds on molecular
timescales, which are the most relevant for photochemistry.
Here, we have shown that harnessing a simulator’s native
noise as a resource always extends the possible simulation
times, up to picoseconds on molecular timescales.

The result of using noise as a resource is counterintuitive:
open-system simulation, which is usually a harder problem
than closed-system simulation, becomes an easier problem
on an MQB simulator. On both classical and quantum digital
computers, simulating open-system dynamics requires more
resources, either to represent density matrices instead of wave
functions or to represent the environment (or both). By con-
trast, on an analog simulator, if some of the noise is used
for the simulation, the remaining unusable dissipation has a
smaller deleterious effect, extending the possible simulation
duration.

The transition from a closed to an open simulation requires
minimal additional experimental cost on a trapped-ion MQB
simulator. When using Raman lasers to inject dissipation, no
additional hardware is required, since those lasers are required
for the LVC simulation as well. For the other hardware we
describe, such as the magnetic-field solenoid, the overhead is
constant regardless of the system size (e.g., only one solenoid
is needed for any molecule).

Ion traps are particularly versatile MQB simulators. The
two example systems show that our approach can accom-
modate a wide range of molecular systems: from a small
inorganic ion to a neutral organic molecule; from a polar sol-
vent to an environment of intramolecular vibrations; different
numbers of vibrational modes, with frequencies varying by
an order of magnitude; global- and single-mode dissipation

injection; and scaling-factor selection to minimize noise in-
jection.

Like any LVC simulation, our scheme requires a parametri-
sation of the Hamiltonian in Eq. (4). As is standard in
nonadiabatic dynamics, the parameters can be obtained using
a prior electronic-structure calculation. In addition, we require
values of the dissipation rates; these can also be obtained from
a prior calculation or by comparison with experimental results
on related molecules. For systems without enough experi-
mental information and unknown dissipative rates, our global
injection schemes offer an initial approach for estimation of
the molecular dissipation effects and for the interpretation of
experimental data. For example, our algorithm could be used
in the quantum time-domain spectroscopy algorithm [24] to
predict or explain spectral peak broadening in open molecular
systems.

We expect that our approach can be extended to dissipa-
tion models more general than the Lindblad master equation.
For example, non-Markovian environments include strong
coupling between the molecule and the environment with
long-time correlation functions [77]. One possibility for en-
gineering a non-Markovian environment could be to inject
correlated (coloured) classical noise [78] into the amplitude
and phase of the laser beams used for vibronic and electronic
coupling. Alternatively, a hybrid approach could be pursued,
which combines our Lindblad techniques with an explicitly
implemented, strongly coupled environment, implemented us-
ing additional ancillary ions [30,31] or vibrational modes
(with a structured spectrum).

VII. CONCLUSION

Overall, including native dissipation relaxes the experi-
mental complexity when transitioning from closed- to open-
system simulation and reduces error accumulation, allowing
for longer, more accurate analog simulations of molecular
dynamics. When injected dissipation is necessary, minimal
hardware modifications are required. Because of the difficulty
of simulating open molecular systems both classically and on
digital quantum computers, these advantages position analog
quantum simulation as a contender for achieving quantum
advantage on a problem of practical importance.
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