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Abstract

The difficulty of simulating quantum systems, well known to quantum
chemists, prompted the idea of quantum computation. One can avoid the
steep scaling associated with the exact simulation of increasingly large quan-
tum systems on conventional computers, by mapping the quantum system to
another, more controllable one. In this review, we discuss to what extent the
ideas in quantum computation, now a well-established field, have been ap-
plied to chemical problems. We describe algorithms that achieve significant
advantages for the electronic-structure problem, the simulation of chemical
dynamics, protein folding, and other tasks. Although theory is still ahead of
experiment, we outline recent advances that have led to the first chemical
calculations on small quantum information processors.
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AQC: adiabatic
quantum computation

Qubit: quantum bit,
generalization of the
classical bit

Entangled state:
a composite quantum
state that is not a
product state

1. INTRODUCTION

One of the greatest challenges in quantum chemistry is to fully understand the complicated elec-
tronic structure of atoms and molecules. Over the past century, enormous progress has been made
in describing the general behavior of relatively simple systems. In particular, combined with phys-
ical insights, elegant computational approaches have been developed, ranging from wave-function
methods to quantum Monte Carlo and density functional theory. The challenge is that the Hilbert
spaces of quantum systems grow exponentially with system size. Therefore, as these methods are
extended to higher accuracy or to larger systems, the computational requirements become un-
reachable with current computers. This problem is not merely a consequence of technological
limitations, but stems from the inherent difficulty of simulating quantum systems with computers
based on classical mechanics. It is therefore important to know if the computational bottlenecks of
classical computers can be solved by a computing model based on quantum mechanics—quantum
computation—whose development has revolutionized our understanding of the connections be-
tween computer science and physics.

The idea of mapping the dynamics of a quantum system of interest onto the dynamics of
a controllable quantum system was proposed in 1982 by Feynman (1) and developed in 1996
by Lloyd (2). Such a quantum computer would be able to obtain information inaccessible with
classical computers. Consequently, quantum simulation promises to be a powerful new tool for
quantum chemistry. In this article, we review the recent applications of quantum simulation to
chemical problems that have proven difficult on conventional computers. After introducing basic
concepts in quantum computation, we describe quantum algorithms for the exact, nonadiabatic
simulation of chemical dynamics as well as for the full configuration interaction (FCI) treatment
of electronic structure. We also discuss solving chemical optimization problems, such as lattice
folding, using adiabatic quantum computation (AQC). Finally, we describe recent experimental
implementations of these algorithms, including the first quantum simulations of chemical systems.

2. QUANTUM COMPUTATION

2.1. Differences Between Quantum and Classical Computation

There are fundamental differences between quantum and classical computers. Unlike the clas-
sical bit, which is always either a 0 or a 1, the basic unit of quantum information is the qubit
(Figure 1), which can be in a superposition of |0〉 and |1〉: α|0〉 + β|1〉. States of n qubits are
elements of an exponentially large, 2n-dimensional, Hilbert space, spanned by a basis of the form
|x1〉 · · · |xn〉 ≡ |x1 . . . xn〉, where each |xi 〉 is |0〉 or |1〉. This enables entanglement, a feature neces-
sary for the advantage of quantum computers. As an example of an entangled state, the two-qubit
Bell state |�+〉 = (|00〉 + |11〉)/√2 cannot be written as a product state |φ1〉|φ2〉.

The linearity of quantum theory implies that a quantum computer can execute classical com-
putations in superposition. For example, if the input state contains all possible input values |x〉 of
a function f (x), the function can be computed using a unitary operation U f as∑

x

ax |x〉|0〉 Uf−→
∑

x

ax |x〉| f (x)〉. (1)

With a single call to U f , the quantum computer produces a state that contains information about
all the possible outputs of f (x).

Nevertheless, quantum computation has several limitations. For example, the no-cloning theo-
rem (3, 4) states that an unknown quantum state cannot be copied perfectly. More importantly, the
information of a general quantum state cannot be read out with a single projective measurement
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a b
Hadamard Phase-estimation algorithm (PEA)
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|0〉|1〉 → |0〉|1〉
|1〉|0〉 → |1〉|1〉

|0000〉|φ0〉 → |E0〉|φ0〉
|0000〉|φ1〉 → |E1〉|φ1〉
|0000〉|φ2〉 → |E2〉|φ2〉

-
-
-

|1〉|1〉 → |1〉|0〉

(|0〉 – |1〉)
2

1

H

H

Figure 1
Qubit, elementary gates, and phase-estimation algorithm. (a) The quantum state of a qubit can be represented on a Bloch sphere.
(b) The action of the Hadamard gate H on a qubit is shown in panel a. The controlled-NOT (CNOT) gate together with single qubit
gates form a universal gate set. The quantum circuit for the phase-estimation algorithm (PEA) is shown on the right. Here
U |φk〉 = e2π i Ek |φk〉 and QFT is the quantum Fourier transform. The eigenvalues in this case are evaluated to four-digit accuracy.

Universal quantum
gate set: a set of
quantum gates that can
approximate any
quantum circuit

because that would collapse a superposition into one of its components. Therefore, although the
state in Equation 1 contains information about all possible outputs, that information is not im-
mediately accessible. Instead, a quantum algorithm has to be designed in a way that makes it easy
to measure a global property of f, without making it necessary to compute all the individual f(x).
Algorithms of this kind are discussed in the following sections.

2.2. Approaches to Quantum Computing

There are several models of, or ways of formulating, quantum computation. Most work in quantum
simulation has been done in the circuit and adiabatic models. Although the two are known to be
computationally equivalent—any computation that can be performed in one model can performed
in the other in a comparable amount of time (5–7)—different problems are solved more naturally
in different models. We discuss the two models in turn but note that other models hold promise
for the development of future simulation algorithms, including topological quantum computing
(8, 9), one-way quantum computing (10, 11), and quantum walks (12).

2.2.1. The circuit model. The cornerstone of quantum computation is the generalization of the
classical circuit model, composed of classical bits and logical gates, to a quantum circuit model
(4, 13, 14). A quantum circuit is a multiqubit unitary transformation U, which maps a set of initial
states to some final states. Usually, a unitary gate is decomposed into elementary gates that involve
a few (one or two) qubits each.

In classical computing, the NAND gate is universal (15), meaning that any logical circuit can be
constructed using NAND gates only. Similarly, in quantum computing, there are sets of unitary
operations that form universal quantum gate sets. A quantum computer that can implement such
a set is called universal and can perform any unitary transformation U to an arbitrary accuracy.
It turns out that the set containing all single-qubit gates in addition to any two-qubit entangling
gate, such as CNOT, is universal (3) (Figure 1). An entangling gate can be realized by any
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QFT: quantum
Fourier transform

Efficient algorithm:
running in polynomial
time

P: polynomial-time
complexity class (easy
to solve)

NP: nondeterministic
polynomial-time
complexity class (easy
to verify solution)

Easy problem:
solvable in polynomial
time

physical interaction that can generate entanglement between qubits. Examples of experimental
implementations of quantum gates have been reviewed (16), and we cover some of the experiments
relevant to quantum simulation in Section 5.

Besides the elementary gates, an important quantum transformation is the quantum Fourier
transform (QFT). It transforms any quantum state |ϕ〉 = ∑

x ϕ(x)|x〉 into its Fourier
representation,

UQF T |ϕ〉 =
N −1∑
k=0

ϕ̃(k)|k〉, (2)

where ϕ̃(k) = (1/
√

N )
∑N −1

x=0 ϕ(x)e2π ikx/N are the discrete Fourier coefficients of ϕ(x). The QFT
can be efficiently implemented using a quantum circuit (4): For n qubits, the number of elementary
gates required is O(n2). For comparison, the classical fast Fourier transform requires O(n2n) gates.
We take advantage of the QFT in Section 3.2 for the simulation of quantum dynamics and in
Section 3.3 for the measurement of observables.

2.2.2. Adiabatic quantum computation. An alternative to the gate model is the adiabatic
model of quantum computation (17). In this model, the quantum computer remains in its
ground state throughout the computation. The Hamiltonian H(t) of the computer is changed
slowly from a simple initial Hamiltonian Hi to a final Hamiltonian H f whose ground state
encodes the solution to the computational problem. The adiabatic theorem states that if
the variation of the Hamiltonian is sufficiently slow, the easy-to-prepare ground state of Hi

will be transformed continuously into the ground state of H f . It is desirable to complete
the evolution as quickly as possible; the maximum rate of change is mostly determined
by the energy gap between the ground and first excited states during the evolution (18–
21). The applications of AQC to simulation include preparing quantum states of interest
and solving optimization problems such as protein folding (22). We discuss the details in
Sections 3.4.1 and 4, respectively.

2.3. Quantum Complexity Theory

To understand the computational advantages of quantum algorithms for chemical simulation,
we discuss some aspects of computational complexity theory, which defines quantum speedup
unambiguously. A proper measure of the complexity of an algorithm is how many operations (or
how much time) it takes to solve problems of increasing size. Conventionally, a computational
problem is described as easy or tractable if there exists an efficient algorithm for solving it, one
that scales polynomially with input size [for an input of size n, as O(nk) for some k]. Otherwise,
the problem is hard. This distinction is admittedly a rough one: For reasonable problem sizes, an
inefficient algorithm scaling exponentially as O(1.0001n) would be faster than an efficient O(n999)
algorithm. Nevertheless, this convention has proven useful because, in practice, polynomially
scaling algorithms generally outperform exponential ones.

The class of all problems that are easy for classical computers (classical Turing machines)
is called P (23). (Strictly speaking, these are decision problems, those with a yes-or-no answer.
However, other problems can be recast as decision problems; for example, instead of asking “What
is the ground-state energy of molecule X?,” we might ask “Is the ground-state energy of X less
than Eguess?”) The class of all problems whose answer can be verified in polynomial time is NP. For
example, even though we do not know how to factor numbers efficiently, factoring is in NP because
we can check the proposed answer efficiently by multiplication. We note that P ⊆ NP because a
solution to an easy problem can be verified easily. Whether P = NP is a famously open question;
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QMA

P

BQP

NP

NP-
hard

QMA-
hard

Figure 2
The conjectured relationships between the computational complexity classes discussed in this review.
Simulating the time evolution of chemical systems (denoted by the star) is in BQP but widely believed to be
outside of P (assuming a constant error and simulated time). That is, it is easy on quantum computers, but
probably hard—even in principle—on conventional ones.

BQP: bounded-error
quantum polynomial
time complexity class
(quantum analog of P)

QMA: quantum
Merlin Arthur
complexity class
(quantum analog of
NP)

Dedicated quantum
simulation:
a quantum system is
engineered to simulate
another

Universal quantum
simulation:
a quantum system is
simulated by a
universal quantum
computer

however, it is widely believed that they are not equal, that is, that there are problems in NP that
cannot be solved easily (24). The hardest among them belong to the class NP-hard: if any NP-hard
problem can be solved efficiently, then so can any problem in NP.

The class of problems that are easy for a quantum computer is known as BQP (25). The quantum
analog of NP is called QMA and contains those problems easy to check on a quantum computer.
In analogy with NP-hard problems, QMA-hard contains the hardest problems in QMA. Shor’s
(26) factoring algorithm is significant because it provides an example of a problem in BQP that is
widely thought (although not proven) to be outside of P, that is, a problem believed to be hard on
classical computers that is easy for a quantum computer.

The relationships between the complexity classes mentioned above are illustrated in Figure 2.
In the remainder of this review, we explore the advantages of quantum simulation over its classical
counterpart partly by situating various simulation tasks in the computational classes illustrated in
Figure 2.

3. QUANTUM SIMULATION

Quantum simulation schemes can be divided into two broad classes. The first is dedicated quantum
simulation, in which one quantum system is engineered to simulate another quantum system. For
example, quantum gases in optical lattices can be used to simulate superfluidity (27). The other,
more general, approach is universal quantum simulation, simulating a quantum system using a
universal quantum computer. The terms analog and digital have also been used for dedicated and
universal quantum simulation, respectively, to emphasize that quantum error correction is available
to the latter (28). Although we focus on universal quantum simulation because most chemical pro-
posals assume a universal quantum computer, we mention dedicated simulators where appropriate.

One of the main goals of quantum simulation is to determine the physical properties of a
particular quantum system. This problem can usually be conceptualized as involving three steps:
(a) Initialize the qubits in a state that can be prepared efficiently, (b) apply a unitary evolution to this
initial state, and (c) read out the desired information from the final state. [Nonunitary open-system
dynamics have been studied as well (29).]

We note at the outset that it is not possible to exactly simulate an arbitrary unitary evolution on
a quantum computer efficiently. An arbitrary unitary acting on a system of n spins has 2n × 2n free
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parameters and would require an exponential number of elementary quantum gates to implement.
However, in quantum chemistry, it usually is not necessary to simulate arbitrary dynamics, as
natural systems are not arbitrary (2). Instead, the interactions involved (between molecular orbitals,
for example) are local—featuring at most k-body interactions—and this crucial aspect of their
structure can be exploited for their efficient simulation. That is, the Hamiltonian generating the
unitary evolution is a sum H = ∑

i Hi of polynomially many terms, each of which acts on at most
polynomially many degrees of freedom. A local Hamiltonian generates a time evolution that can
be decomposed into t/δt time steps according to the Lie-Trotter formula,

U = e−i
∑

i Hi t ≈
(∏

i

e−i Hi δt

)t/δt

. (3)

The approximation can be improved by increasing the number of time steps or by using higher-
order generalizations of this formula (30, 31). Finally, because each factor e−i Hi δt acts on only
a subregion of the Hilbert space and therefore can be simulated efficiently, so can a product
of polynomially many such factors. Hence, the time it takes to perform the simulation scales
polynomially with the simulated time t. Most methods of quantum simulation make use of the
Trotter decomposition, and we describe in more detail their applications in chemistry below. We
do not discuss all the available methods, for which the reader is directed to comprehensive reviews
(32–34).

In the following, we describe two ways in which chemical wave functions can be encoded on a
quantum computer, second- and first-quantization approaches (see Table 1 for a comparison). For
each approach, we outline the methods of preparing certain classes of initial states and propagating
them in time. Afterward, we discuss the methods of measurement of observables and preparation
of ground and thermal states, which do not depend essentially on the way the wave function is
encoded.

3.1. Second Quantization

We start by considering the purely electronic molecular problem, in which the BOA has been used
to separate the electronic and nuclear motion. The wave function of the electrons can be expanded
in an orthonormal basis of M molecular spin-orbitals {|χi 〉}. Corresponding to this basis are the
fermionic creation and annihilation operators a†

i and ai . There is a natural mapping between the
electronic Fock space and the state of M qubits: Having qubit i in the state |0〉 (or |1〉) indicates
that spin-orbital i is unoccupied (or occupied).

An important subtlety is that electrons in a molecule, unlike the individually addressable qubits,
are indistinguishable. In other words, whereas the operators a†

i and ai obey the canonical fermionic
anticommutation relations, {ai , a†

j } = δi j , the qubit operators that change |0〉 to |1〉 and vice versa do
not. This problem can be solved by using the Jordan-Wigner transformation to enforce the correct
commutation relations on the quantum computer (35–38). The Jordan-Wigner transformation
for this case results in the following mapping between the fermionic operator algebra and the
qubit spin algebra:

a†
i ↔ 1⊗(i−1) ⊗ σ− ⊗ (σ z)⊗(2M −i−1), (4a)

ai ↔ 1⊗(i−1) ⊗ σ+ ⊗ (σ z)⊗(2M −i−1), (4b)

where σ− = |1〉〈0| and σ+ = |0〉〈1|.
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Table 1 Comparison of second- and first-quantization approaches to quantum simulation

Second quantized

Fock state in a given basis: On a grid of
2n sites per
dimension:

One per basis state (spin-orbital): 3n per particle (nuclei and electrons):

Coefficients precomputed classically: Interaction calculated on the fly:

O(M5) with number of basis states O(B2) with number of particles

Compact wave-function representation
(requires fewer qubits)

Takes advantage of classical electronic-
structure theory to improve performance

Already experimentally implemented

•

•

•

Better asymptotic scaling (requires
fewer gates)

Treats dynamics better

Can be used for computing reaction rates
or state-to-state transition amplitudes

•

•

•

Wave-function
encoding

Qubits required
to represent the

wave function

Quantum gates
required for

simulation

Advantages

Molecular
Hamiltonian

First quantized

|ψ〉 = |0100〉

χ1 χ2 χ3 χ4 |ψ〉 = ∑ ax |x〉
x

0
0 50 100 150

Basis set size

Q
u

b
it

s 
re

q
u

ir
e

d

200 250 300

50

100

150

200

250

300

H2O, 6–31G*
C2H6, 6–31G*

H2O, cc–pVTZ

C6H6, 6–31G*

C2H6, cc–pVTZ

0
1 3 4 52 6 7

Number of particles

Q
u

b
it

s 
re

q
u

ir
e

d

8 9 10

50

100

150

200

250

300

H
He

Li

O

H + H2

∑hpqa†
paq +        ∑hpqrsa†

pa†
qaras

pq pqrs
∑           + ∑

i i <  j

p2
i

2mi

1

2

qi qj

ri j

The electronic Hamiltonian in the second-quantized form is

H =
∑

pq

hpq a†
p aq + 1

2

∑
pqrs

hpqrs a†
p a†

q ar as , (5)

where the spin-orbital indices p, q, r, and s each range from 1 to M. Here, one-electron integrals
hpq ≡ 〈p |(T +VN )|q 〉 involve the electronic kinetic energy T and the nuclear-electron interaction
VN , and the two-electron integrals hpqrs ≡ 〈pq |Ve |rs 〉 contain the electron-electron interaction
term Ve . For simulation on a quantum computer, this Hamiltonian is recast into the spin algebra
using the Jordan-Wigner transformation (Equation 4), and the time evolution it generates is
implemented using the Trotter decomposition (Equation 3). We note that H contains O(M 4)
terms, and each of these terms generates a time evolution of the form

Upq = e−ihpq a†p aq δt or Upqrs = e−ihpqrs a†p a†q ar as δt . (6)

Each of these operators requires O(M) elementary quantum gates to implement because of the
Jordan-Wigner transformation. Because there are altogether O(M 4) terms that need to be im-
plemented separately, the total cost of simulating H scales as O(M 5) (39).
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Although any basis {|χi 〉} can be chosen to represent H, it is desirable to choose a basis as small
as possible that adequately represents the system under study. Electronic-structure experience
provides many good starting points, such as the Hartree-Fock (HF) basis or the natural orbitals
(40). Regardless of the basis chosen, a lot of the computation can be carried out on classical com-
puters as preprocessing. In particular, the coefficients hpq and hpqrs can be precomputed efficiently
on classical computers. That way, only the more computationally demanding tasks are left for the
quantum computer.

The HF basis allows the use of the HF reference state as an input to the quantum computation
(35). A salient feature is that such states are Fock states, which are easy to prepare on the quantum
computer: Some qubits are initialized to |0〉 and others to |1〉. In fact, any single-determinant state
can be prepared easily in this way. Furthermore, it is possible to prepare superpositions of Fock
basis states as inputs for the quantum computation. Although an arbitrary state might be difficult
to prepare, many states of interest, including those with only polynomially many determinant
contributions, can be prepared efficiently (36–38, 41). The problem of preparing an initial state
that is close to the true molecular ground state is addressed in Section 3.4.

The chief advantage of the second-quantization method is that it is frugal with quantum re-
sources: Only one qubit per basis state is required, and the integrals can be precomputed classically.
For this reason, the first chemical quantum computation was carried out in second quantization
(see Section 5). Nevertheless, there are processes, such as chemical reactions, that are difficult
to describe in a small, fixed basis set, and for this we turn to a discussion of first-quantization
methods.

3.2. First Quantization

The first-quantization method, due to Zalka (42–44), simulates particles governed by the
Schrödinger equation on a grid in real space. (We also note the method of Reference 45, which in
our terminology is a hybrid between second- and first-quantization methods. It associates a qubit
to the occupation of each lattice site.) For a single particle in one dimension, space is discretized
into 2n points, which, when represented using n qubits, range from |0 . . . 0〉 to |1 . . . 1〉. The par-
ticle’s wave function can be expanded in this position representation as |ψ〉 = ∑2n−1

x=0 ax |x〉. The
Hamiltonian to be simulated is

H = T + V = p2

2m
+ V (x), (7)

and the resulting unitary can be implemented using the quantum version of the split-operator
method (46, 47):

U (δt) = e−i (T +V )δt ≈ UQFTe−iT δtU †
QFTe−iV δt . (8)

The operators e−iV δt and e−iT δt are diagonal in the position and momentum representations,
respectively. A diagonal operator can be implemented easily because it amounts to adding a phase
e−iV (x)δt to each basis state |x〉. Furthermore, it is easy on a quantum computer to switch between the
position and momentum representations of a wave function using the efficient QFT. Therefore,
simulating a time evolution for time t involves alternately applying e−iV δt and e−iT δt with the time
steps δt chosen to be sufficiently short to secure a desired accuracy. Finally, the scheme can be
generalized easily to many particles in three dimensions: A system of B particles requires 3Bn
qubits, n for each degree of freedom.

The first-quantization method can be applied to many problems. The earliest applications
established that as few as 10–15 qubits would be needed for a proof-of-principle demonstration
of single-particle dynamics (48) [later improved to 6–10 (49)]. The method could also be used
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to study faithfully the chaotic dynamics of the kicked-rotor model (50). The first chemical ap-
plication was the proposal of a method for the calculation of the thermal rate constant (51) (see
Section 3.3).

We investigated the applicability of the first-quantization method to the simulation of chemical
dynamics (42). The simplest approach is to consider all the nuclei and electrons explicitly, in which
case the exact nonrelativistic molecular Hamiltonian reads

H =
∑

i

p2
i

2mi
+

∑
i< j

qi q j

ri j
, (9)

where ri j ≡ |ri − r j | is the distance between particles i and j, which carry charges qi and q j ,
respectively. As before, the split-operator method can be used to separate the unitaries that are
diagonal in the position and momentum bases. We note that a Jordan-Wigner transformation is
not required; H preserves permutational symmetry, meaning that if the initial state is properly
(anti)symmetrized (see below), it will stay so throughout the simulation.

As the Born-Oppenheimer approximation (BOA) has been used widely in quantum chemistry,
it might seem extravagant to simulate explicitly all the nuclei and electrons. Nevertheless, the exact
simulation in fact is faster than using the BOA for reactions with more than approximately four
atoms (42). The reason for this is the need to evaluate the potential V (r1, . . . , rB ) on the fly on the
quantum computer. In the exact case, the potential is simply the pairwise Coulomb interaction;
by contrast, evaluating the complicated, many-body potential energy surfaces that are supplied
by the BOA is a much more daunting task, even considering that one can use nuclear time steps
that are approximately 1,000 times longer. That is, exact simulation minimizes arithmetic, which
is the bottleneck of the quantum computation; by contrast, the bottleneck on classical computers
is the prohibitive scaling of the Hilbert space size, which is alleviated by the BOA.

In order to carry out simulations, it is important to prepare suitable initial states. Zalka’s (44)
original paper contained a general state-preparation scheme, later rediscovered (52–54) and im-
proved (55). The scheme builds the state one qubit at a time by performing a rotation (dependent
on the previous qubits) that redistributes the wave-function amplitude as desired. For example,
Gaussian wave packets or molecular orbitals can be constructed efficiently. We discussed how to
combine such single-particle wave functions into many-particle Slater determinants, superposi-
tions of determinants, and mixed states in Reference 56. In particular, the (anti)symmetrization
algorithm of Reference 57 was improved and used to prepare Slater determinants necessary for
chemical simulation. Furthermore, we outlined a procedure for translating states that are prepared
in second-quantization language into first-quantized wave functions, and vice versa. Techniques
for preparing ground and thermal initial states are discussed in Section 3.4.

The first-quantization approach to quantum simulation suffers from the fact that even the sim-
plest simulations might require dozens of qubits and millions of quantum gates (42). Nevertheless,
it has advantages that would make it useful if large quantum computers are built. Most impor-
tantly, because the Coulomb interaction is pairwise, simulating a system of B particles requires
O(B2) gates, a significant asymptotic improvement over the second-quantized scaling of O(M 5),
where M is the size of the basis set.

3.3. Measuring Observables

Above we discuss how to prepare and evolve quantum states on a quantum computer. Information
about the resulting state must be extracted in the end; however, full characterization (quantum
state tomography) generally requires resources that scale exponentially with the number of qubits.
This is because a measurement projects a state into one consistent with the measurement outcome.
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PEA: phase-
estimation algorithm

Because only a limited amount of information can be extracted efficiently, one needs a specialized
measurement scheme to extract the desired observables, such as dipole moments and correlation
functions.

In principle, an individual measurement can be carried out in any basis. However, as experi-
mental measurement techniques usually address individual qubits, a method is needed to carry out
more complicated measurements. In particular, in order to measure an observable A, one would
like to carry out a measurement in its eigenbasis {|ek〉}. This is achieved by the phase-estimation
algorithm (PEA) (Figure 1) (58, 59, 139):

1√
N

∑
t

|t〉|ψ〉 C−U−→ 1√
N

∑
k,t

c ke−i Akt |t〉|ek〉 QF T−→
∑

k

c k|Ak〉|ek〉, (10)

where c k = 〈ek|ψ〉 and Ak are the eigenvalues of A; C −U is the unitary U = exp(−i At) controlled
by the ancilla qubits, which are initialized in the state (1/

√
N )

∑
t |t〉. When measuring the ancilla,

the eigenvalue Ak will be measured with probability |c k|2 and, if the eigenstates are nondegenerate,
the wave function will collapse to the eigenvector |ek〉. [Other methods for eigenvalue measurement
include pairing adiabatic quantum evolution with Kitaev’s original scheme (60) and applications of
the Hellmann-Feynman theorem (61).] For the PEA to be efficient, it must be possible to simulate
the pseudodynamics e−i At efficiently. In particular, if we are interested in molecular energies, the
observable is the Hamiltonian H, and we need to simulate the actual dynamics e−iHt (see Section 3).
We note that the PEA is closely related to classical algorithms for preparing eigenstates by Fourier
analysis of a propagating system (62, 63). As in classical Fourier analysis, the (pseudo)dynamics
must be simulated for longer times to achieve a higher precision in the Ak. More precisely, for a
final accuracy of ε, the PEA must run for a time O(1/ε) (4, 32).

Because quantum measurement is inherently random, repeating a measurement on multiple
copies of the same system helps to determine expectation values of observables. The central limit
theorem implies that measuring N copies of a state results in a precision that scales as 1/

√
N

[the standard quantum limit (SQL)]. For example, repeating the PEA gives an SQL estimate
of the coefficients |c k|2; these can be used to calculate the expectation value 〈A〉 = ∑

k |c k|2 Ak,
also to the SQL. When entanglement is available, one can achieve precision scaling as 1/N—this
is the Heisenberg or quantum metrology limit (64). An algorithm for the expectation values of
observables has been proposed that can get arbitrarily close to the Heisenberg limit (65).

The first algorithm for measuring a chemical observable was Lidar & Wang’s (51) calculation
of the thermal rate constant by simulating a reaction in first quantization and using the PEA
to obtain the energy spectrum and the eigenstates. These values were used to calculate the rate
constant on a classical computer by integrating the flux-flux correlation function. This method has
been improved with a more direct approach to the rate constant (42) that efficiently obtains the
product branching ratios given different reactant states—if the initial state is a thermal state (see
Section 3.4.2), this gives the rate constant directly. Furthermore, the method was used to obtain
the entire state-to-state scattering matrix. A method for reaction rates using a dedicated quantum
simulator in which artificial molecules are manipulated experimentally also has been proposed (66).

More generally, correlation functions provide information about a system’s transport and spec-
troscopic properties. On a quantum computer, the correlation function of any two observables
can be estimated efficiently if their pseudodynamics each can be simulated efficiently (36, 38). The
method does not suffer from the dynamic sign problem that plagues classical Monte Carlo meth-
ods for sampling correlation functions. An alternative approach is the measurement of correlation
functions using techniques of linear-response theory (67).

Molecular properties such as the dipole moment or the static polarizability are also of chemical
interest. They are derivatives of the molecular energy with respect to an external parameter, such as
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the electric field. We showed how to calculate them (68) using the PEA and the quantum gradient
algorithm (69). The algorithm is insensitive to the dimensionality of the derivatives, an obstacle
to classical computers. For example, the molecular gradient and Hessian can be computed—and
used to optimize the geometry—with a number of energy evaluations independent of system
size.

3.4. Preparing Ground States and Thermal States

In Sections 3.1 and 3.2, we discuss the preparation of various initial states for quantum simulation.
We now turn to the discussion of the preparation of ground and thermal states.

3.4.1. Ground-state preparation by phase estimation. A large part of quantum chemistry is
concerned with the calculation of ground-state properties of molecules, making it desirable to
prepare such states on a quantum computer. In the previous section, we describe how the PEA
can be used to measure a quantum state in the eigenbasis of a Hermitian operator. This suggests a
method for preparing a ground state: Measuring in the eigenbasis of the Hamiltonian will project
a state |ψ〉 to the ground state |g〉 with probability |〈ψ |g〉|2.

The problem, therefore, is to prepare a state close to the ground state, from which we can
project the ground-state component. Choosing a random state |ψrand〉 is bound to fail, as the
overlap is expected to be exponentially small in the number of qubits n: 〈ψrand|g〉 ∼ 2−n. This
means that one would have to repeat the PEA exponentially many times before chancing upon
the ground state.

Methods of quantum chemistry can be used to improve the overlap. We studied the ground-
state preparation of H2O and LiH in second quantization, based on the HF approximation (35).
The goal was to prepare the ground state of the FCI Hamiltonian, so that its energy could be
read out by the PEA, thus solving the electronic-structure problem. Because these molecules were
considered at equilibrium geometries, the HF guess was sufficient for the algorithm to estimate
the ground-state energies of these molecules with high probability. The overlap can be improved
further by choosing a more sophisticated approximation method such as a multiconfiguration
self-consistent field wave function (70).

Alternatively, the overlap can be increased using AQC (Section 2.2.2). We applied adiabatic-
state preparation (ASP) to the case of the hydrogen molecule H2 in the STO-3G basis at various
bond lengths (35). As the bond length increases, the HF state has decreasing overlap with the
exact state, reaching 0.5 at large separations. ASP works by preparing the ground state of the HF
Hamiltonian and then slowly changing to the FCI Hamiltonian. The speed of the variation of the
Hamiltonian is limited by the energy gap between the ground state and the first excited state. In
the case of H2, this method allowed the preparation of the FCI ground state with a high fidelity.

Procedures similar to ASP have been proposed to study low-energy states of some toy models
in physics (61) and superconductivity (71). It is also possible to encode a thermal state into the
ground state of a Hamiltonian (72, 73), offering a way to prepare a thermal state, a problem further
discussed in the next section.

3.4.2. Thermal-state preparation Although not often a subject of quantum-chemical calcula-
tions, the thermal states are significant because they can be used to solve many problems, ranging
from statistical mechanics to the calculation of thermal rate constants. Classical algorithms typi-
cally rely on Markov chain Monte Carlo methods, which sample from the Gibbs density matrix,
ρ = e−βH /Z, where Z is the partition function. The challenge is that it is generally impossible to
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sample from the eigenstates |ek〉 of a certain Hamiltonian H if they are not predetermined (which
is often more challenging).

With a quantum computer, assuming the PEA can be implemented efficiently, we can prepare
the thermal state of any classical or quantum Hamiltonian from a Markov chain constructed by
repeating a completely positive map (67). A limitation of that approach is that the Metropolis step
can make too many transitions between states of very different energies, sometimes leading to a
slow convergence rate of the resulting Markov chain. This issue was addressed by building up
the Markov chain by applying random local unitary operations (74). The resulting operation is a
Metropolis-type sampling for quantum states; although the underlying Markov chain is classical
in nature, performing it on a quantum computer provides the benefit of being able to use the PEA
without explicitly solving the eigenvalue equations. However, quantum computers can implement
Markov chains corresponding to thermal states of classical Hamiltonians with a quadratic speedup
(75–80).

Zalka’s state preparation algorithm (see Section 3.2) is applicable to preparing the coherent
encoding of thermal states (CETS) |ψth〉,

|ψth〉 =
∑

k

√
e−βEk /Z|ek〉|ek〉, (11)

which is equivalent to the Gibbs density matrix, ρth = ∑
k e−βEk /Z|ek〉〈ek|, if one register is traced

out. If the eigenstates and eigenvalues are known, it is possible to construct the CETS directly
(56). When they are unknown, by combining ideas from belief-propagation (81) and quantum
amplitude amplification (3), we were able to construct the CETS of classical Hamiltonians with a
quadratic quantum speedup (82).

Lastly, a thermal state can be prepared by modeling the physical interaction with a heat bath
(44, 67). However, the computational cost of these methods is not well understood.

3.4.3. QMA hardness and future prospects. Unfortunately, the procedures for ground- and
thermal-state preparation outlined above are not fully scalable to larger systems. A simple way to
see this is to imagine a system composed of N identical, noninteracting molecules. Even if one
molecule can be prepared with a ground-state overlap of 1 − ε by any method, the fidelity of the
N-molecule state will be exponentially small, (1 − ε)N (83). ASP would fail when the energy gap
became so small that the Hamiltonian would have to be varied exponentially slowly.

More generally, there are broad classes of Hamiltonians for which finding the ground-state
energy (and therefore also a thermal state) is known to be QMA-hard, that is, most likely hard even
on a quantum computer (see Section 2.3) (6, 84–87). Nevertheless, the scaling of the ground- and
thermal-state energy problems for chemical systems on a quantum computer is an open question.
It is possible that algorithms can be found that are not efficient for all QMA-hard Hamiltonians
but nevertheless succeed for chemical problems.

4. OPTIMIZATION WITH ADIABATIC QUANTUM SIMULATION

We describe the use of quantum computers to solve classical optimization problems related to
chemistry and biology. This class of problems plays an important role in fields such as drug design,
molecular recognition, geometry optimization, and protein folding (88, 89).

Of all the models of quantum computation, AQC is perhaps the best suited for dealing with
discrete optimization problems. As explained in Section 2.2.2, the essential idea behind AQC is
to encode the solution to a computational problem in a (final) Hamiltonian ground state that is
prepared adiabatically.
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Although final Hamiltonians have been proposed for various problems related to computer
science (17, 90–93), only recently were constructions (22) derived for problems of chemical interest
such as the lattice heteropolymer problem (94–96), an NP-hard problem (97). It can be used as a
model of protein folding (98), one of the cornerstones of biophysics. We note that the quantum-
computational implementation of the protein folding problem does not assume that the protein
is treated quantum mechanically. Instead, the quantum computer is being used as a tool to solve
the classical optimization problem. In the lattice folding problem, the sequence of amino acids
is coarse-grained to a sequence of beads (amino acids) connected by strings (peptide bond). This
chain of beads occupies points on a two- or three-dimensional lattice; a valid configuration (fold)
is a self-avoiding walk on the lattice, and its energy is determined by the interaction energies
among amino acids that are nonbonded nearest neighbors in the lattice. The hydrophobic-polar
model (99) is the simplest realization of this problem. The amino acids are broken into two
groups, hydrophobic (H) and polar (P). Whenever two nonbonded hydrophobic amino acids are
nearest neighbors in the lattice, the free energy of the protein is reduced by one unit of energy,
EHH = −1. The remaining interactions do not contribute to the free energy EHP = EPP = 0. The
lattice folding problem consists of finding one or more folds that minimize the free energy of the
protein. By the thermodynamic hypothesis (100), such fold(s) correspond to the conformation of
the native conformation(s) of the protein.

The theory behind the quantum-computational implementation of lattice folding is guided
by the proposed quantum adiabatic platform on superconducting qubits (101). This scheme is
designed to find solutions to the problem

E(s) = −
∑

i

hi s i +
∑
j>i

Ji j s i s j , (12)

where |hi | ≤ 1, |Ji j | ≤ 1, and s i = ±1. Given a set of {h|!i } and the interaction matrix {Ji j }, the
goal is to find the assignment s∗ = s ∗

1 s ∗
2 · · · s ∗

N that minimizes E(s).
The time-dependent Hamiltonian is chosen to be

H (τ ) = A(τ )Hi + B(τ )H f , τ = t/trun, (13)

where Hi has a simple-to-prepare ground state and H f = −∑
i hiσ

i
z + ∑

j>i Ji j σ
i
zσ

j
z , where σ i

z

denotes the Pauli matrix acting on the i-th qubit, and trun is the running time. The time-dependent
functions A(τ ) and B(τ ) are such that A(0) � B(0) and A(1) � B(1). Therefore, at the beginning
(end) of the simulation, the ground state corresponds to the ground state of Hi (H f ). As desired,
|s∗〉 ≡ |s ∗

1 , s ∗
2 , . . . , s ∗

N 〉 is the ground state of H f . Measurement of this final state provides the
solution to our problem.

The theoretical challenge is to map the lattice folding free-energy function into the form of
Equation 12 (22, 102). In two dimensions, we use two binary variables determining the direction
of each bond between two amino acids (beads). If a particular bond points upwards, we write 11; if
it points downwards, leftwards, or rightwards, we write 00, 10, or 01, respectively. For an N–amino
acid protein, we need two binary variables for each of the N −1 bonds. Fixing the direction of the
first bond reduces the number of variables to � = 2(N − 2) binary variables. Any possible N-bead
fold can be represented by the string of binary variables of the form 01q1q2 · · · q�−1q�, where we
set the direction of the first bond to be right (01).

As an example, the free-energy function (102) associated with the folding of a four–amino acid
peptide assisted by a chaperone protein (see Figure 3) is

E(q ) = 4 − 3q1 + 4q2 − 4q1q2 − q3 + q1q3 − 2q2q3 + 4q4 − 2q1q4

− 8q2q4 + 5q1q2q4 − 2q3q4 + 5q2q3q4 − q1q2q3q4.
(14)
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Figure 3
Lattice folding in the hydrophobic-polar model using quantum adiabatic hardware. (a) In vacuum, the
four–amino acid peptide HPPH could fold clockwise or counterclockwise, depending on whether the third
amino acid moves downward or upward, respectively. The presence of two hydrophobic amino acids (1 and
4) on two adjacent sites lowers the energy by one unit. (b) In vivo folding of proteins involves the assistance
of molecular chaperone proteins whose main function is to assist the folding of the newly synthesized
polypeptide. The chaperone molecule ( pink region) obstructs the third amino acid from moving downward,
making the counterclockwise fold the only global minimum in the energy landscape. An overlap of an amino
acid with the chaperone increases the energy by four units. (c, left panel ) Time-dependent spectrum showing
the eight lowest-energy eigenvalues for the Hamiltonian in Equation 13, as implemented using eight-qubit
hardware in Reference 103. (Right panel ) Corresponding energy landscape (Equation 14) up to E = 1. Each
overlap of two amino acids (indicated by a red x) raises the free energy by two units. The four binary
variables encode the direction of the third and fourth bonds of the peptide. The quantum adiabatic hardware
found the correct solution 80.3% of the time (103).

By substituting values for the four binary variables defining the directions of the second (q1q2)
and third (q3q4) bonds, we can verify that the 16 assignments provide the desired energy spectrum
(Figure 3). Equation 14 is not in the form of Equation 12. We converted this energy function
from its quartic form to a quadratic form, using two extra ancilla binary variables (102). After the
substitution qi ≡ 1

2 (1 − s i ), the free-energy function now resembles that of Equation 12. An early
experimental realization is described in Section 5.

Solving the hydrophobic-polar model is NP-hard (97, 104, 105). AQC is equivalent to
the circuit model, so it is likely unable to solve NP-hard problems in polynomial time (see
Section 2.3). Real-world problems (and the instances defining biologically relevant proteins) are
not necessarily structureless. Taking advantage of the structure of or information about a particu-
lar problem instance is one of the ideas behind new algorithmic strategies (106–108). An example
is to introduce heuristic strategies for AQC by initializing the calculation with an educated guess
(108).
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5. EXPERIMENTAL PROGRESS

Experimental quantum simulation has progressed rapidly (28, 32) since the early simulation of
quantum oscillators using nuclear magnetic resonance (NMR) (109). Here we review the proof-
of-principle chemical applications of available quantum-computational devices.

5.1. Quantum Optics

On an optical quantum computer, various degrees of freedom of single photons, such as polar-
ization or path, are used to encode quantum information (110, 111). This architecture was used
for the first quantum simulation of a molecular system, a minimal-basis model of the hydrogen
molecule H2 (112). Qubits were encoded in photon polarization, whereas two-qubit gates were
implemented probabilistically using linear-optical elements and projective measurement. The
minimal-basis description of H2 used two spin-orbitals per atom. Because the FCI Hamiltonian
is block-diagonal with 2 × 2 blocks, two qubits sufficed for the experiment: one for storing the
system wave function and one for the readout of the PEA. The PEA was implemented iteratively,
extracting one bit of the value of the energy at a time. Twenty bits of the energy were obtained,
and the answer was exact within the basis set. Figure 4 describes the experiment and the potential
energy surfaces that were obtained.

5.2. Nuclear Magnetic Resonance

Nuclear spins can serve as qubits, being addressed and read out using an NMR spectrometer
(113). The first experimental quantum simulation, of a harmonic oscillator, was performed using
NMR (109). The platform has since been used to simulate a number of model systems (114–117),
leading up to the recent simulation of H2 (118). The H2 experiment used 13C-labeled chloroform,
in which the carbon and hydrogen nuclear spins form two qubits. The experiment achieved 45
bits of precision (15 iterations of PEA, 3 bits per iteration) in the ground-state energy. ASP
(Section 3.4) was implemented for various bond distances.

5.3. Superconducting Systems

The circulating current (clockwise or counterclockwise) flowing in a micrometer-sized loop of
a superconductor can be used as a qubit (119, 120). Examples of applications based on super-
conducting qubits include the tailor-made generation of bosonic harmonic oscillator states (121)
and the implementation of the Deutsch-Jozsa and Grover quantum search algorithms (122). Re-
cently, the free-energy function discussed in Section 4 for the four–amino acid peptide assisted
by a chaperone protein (see Figure 3) has been realized experimentally (103). A microprocessor
consisting of an array of coupled superconductor qubits has been used to implement the time-
dependent Hamiltonian in Equation 13, with Hi ∝ ∑

i σ i
x as the initial Hamiltonian (101, 123,

124). The quantum hardware operating at a temperature of 20 mK found the correct solution
with a probability of 80.3%. Characterization of this device is currently underway (125–128).

5.4. Trapped Ions

Qubits can also be encoded in the electronic states of cold trapped ions, offering one of the most
controllable systems available today (129–131). This platform has already produced sophisticated
simulations of physical systems (132–134), but chemical applications are still to come.
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Experimental
simulation of the H2
molecule on a
linear-optical quantum
computer (112).
(a) Two-qubit iterative
version of the
phase-estimation
algorithm for
evaluating molecular
energies.
(b) Decomposition of
the algorithm into
gates. (c) The layout of
the optical elements
used to implement the
quantum gates on
photonic polarization
qubits. (d ) The
computed potential
energy surfaces of the
H2 molecule in a
minimal-basis set. The
results are the exact (in
the basis) full-
configuration-
interaction energies, to
20 bits of precision.
Figure adapted from
Reference 112.
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6. CONCLUSIONS

Above we outline how a quantum computer could be employed for the simulation of chemical
systems and their properties, including correlation functions and reaction rates. A method for
lattice protein folding also is discussed. Although we focus on the adiabatic and circuit models,
these are not the only universal models of quantum computation, and it may be possible to make
further algorithmic progress with models such as topological quantum computing (8,9), one-way
quantum computing (10, 11), and quantum walks (12, 135, 136).

We also report on the first experiments relevant to chemistry, and we expect more to come
in the near future. With recent technological advances, there are many prospects for the future
of quantum simulation. However, as more qubits are added to experiments, more effort will be
needed to control decoherence, as error correction procedures (4) might not be sufficient in
practice because of the spatial and temporal overheads required (137). Instead, it may be possible
to build resilient quantum simulators or to incorporate the noise into the simulation.

Although practical quantum computers are not available yet, quantum information theory
has already influenced the development of new methods for quantum chemistry. For instance,
density matrix renormalization group theory has been extended using quantum information, and
its applications to chemistry have been pursued vigorously (138). By studying the simulation of
chemical systems on quantum computers, we can also expect new insights into the complexity of
computing their properties classically.

Quantum computers are still in an incipient stage, much like classical computers of the vacuum-
tube era. Nevertheless, the rapid progress in experimental quantum information science shows
no signs of abating, giving many researchers cause for optimism about the technology’s future.
Larger quantum computers would revolutionize chemistry, by allowing for routine execution of
exact, nonadiabatic dynamics simulations, as well as FCI calculations of molecular systems that
are intractable with current classical computing technology.

SUMMARY POINTS

1. A universal quantum computer can simulate chemical systems more efficiently (in some
cases exponentially so) than a classical computer.

2. Preparing the ground state of an arbitrary Hamiltonian is a QMA-hard problem. Nev-
ertheless, a quantum computer may be able to prepare ground states of certain prac-
tically important chemical Hamiltonians, especially when the systems are not strongly
correlated.

3. Simulation of quantum dynamics of physical systems is in general efficient with a quantum
computer.

4. Properties of quantum states can be obtained by various measurement methods.

5. Classical optimization problems, such as lattice protein folding, can be studied by means
of the AQC model.

6. Quantum simulation for chemistry has been realized experimentally in quantum optics,
NMR, and superconducting devices.

FUTURE ISSUES

1. Developing quantum simulation methods based on alternative models of quantum com-
putation is an open research direction.
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2. Dedicated quantum simulators built so far are mostly for simulating condensed matter
systems. It is desirable to make experimental progress on simulating chemical systems.

3. Decoherence is currently the major obstacle for scaling up the current experimental se-
tups. Progress in theoretical and experimental work is needed to overcome decoherence.

4. Methods of quantum error correction, not covered in this review, will be important for
large-scale simulations.
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