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Quantum walks have a host of applications, ranging from quantum computing to the simulation of

biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum

walks with single photons in space. The number of optical elements required scales linearly with the

number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by

introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show

that decoherence significantly affects the probability of absorption.
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The random walk is a fundamental model of dynamical
processes that has found extensive application in science.
The quantum walk (QW) is the extension of the random
walk to the quantum regime [1,2]. Here, the classical
walker is replaced by a quantum particle, such as an
electron, atom or photon, and the stochastic evolution by
a unitary process. A key difference is that the many pos-
sible paths of the quantum walker can exhibit interference,
leading to a very different probability distribution for
finding the walker at a given location.

An important motivation for work on QW’s has been
their application to quantum computation: not only were
they instrumental to Feynman’s original quantum com-
puter (as the clock mechanism [3]), but it has since been
shown that they represent a universal computational primi-
tive [4,5] and have inspired novel quantum algorithms [6–
8]. QW’s have also been used to analyze energy transport
in biological systems [9,10].

Despite a few early experimental demonstrations [11–
14], experimentalists have only recently begun to de-
velop the level of control over single quantum particles
required to implement discrete-time QW’s, leading to
demonstrations with neutral atoms in position space [15],
ions in phase space [16,17], and single photons in time
[18]. Continuous-time quantum walks have different out-
comes, applications, and experimental challenges; see,
e.g., [19].

In this work, we present discrete-time QW’s of single
photons in space. Our approach is robust, due to the use of
intrinsically stable interferometers, yet highly versatile—
enabling control over every operation at every step of the
walk. Of particular interest is the ability to introduce a
controlled amount of decoherence, which we use to ex-
plore the quantum-to-classical transition. Besides being of
fundamental interest, decoherence in QW’s can improve
the performance of certain computational protocols [20]
and is particularly important in their application to describ-
ing energy transport [9,10]. Finally, we investigate the
effect of introducing absorbing boundaries into the walk,
as theoretically investigated by [21,22].

The simplest random walk occurs on a one-dimensional
lattice. The particle begins at one site and each step of the
walk consists of a move to a neighboring site on the left or
right, determined by the outcome of a coin flip. In the
analogous QW, the coin is represented by a two-level
quantum system whose orthogonal levels we will designate
jHi (horizontal) and jVi (vertical). Each step of the QW
starts with an analogue of the coin flip: a unitary coin
operator C is applied to the coin space. An unbiased, or

Hadamard, coin operator transforms the coin so that jHi !
jDi ¼ ðjHi þ jViÞ= ffiffiffi

2
p

, jVi ! jAi ¼ ðjHi � jViÞ= ffiffiffi
2

p
.

Following each coin operation is the shift operator,

S ¼ X

j

jj� 1ihjj � jHihHj þ jjþ 1ihjj � jVihVj; (1)

which moves the particles to one of the neighboring lattice
sites, conditional on the quantum coin state. Therefore, the
operationW ¼ SCmakes up a single step of the QW, and a
walker in an initial state jc i is found in the state WNjc i
after N steps.
The quantum and random walks can be considered the

extremes of a spectrum, with pure quantum evolution turn-
ing into classical evolution if there is sufficient decoher-
ence [23–25]. In addition, all the intermediate walks are
special cases of the broad category of quantum stochastic
walks [26]. Various mechanisms of decoherence have been
studied [25]; here we consider pure dephasing, since this
corresponds to the decoherence mechanism in our experi-
ment. The system is described by a density matrix � which
at each step undergoes the evolution

�Nþ1 ¼ ð1� qÞW�NW
y þ q

X

i

KiW�NW
yKy

i ; (2)

where the Kraus operators Ki ¼ jiihij correspond to pure
dephasing. The parameter q is the probability of a dephas-
ing event occurring at each step. If q ¼ 0, the walk is a
pure QW, while q ¼ 1 reproduces the random walk. Note
that to observe the quantum-to-classical transition, gradual
decoherence must be applied at each step, not just to the
initial coin state [23–25].
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Our implementation of the discrete QW on a line repre-
sents a polarization analogue of the originally proposed
linear-optical version of the Galton board based on beam
splitters and phase shifters [12,27]. A similar, polarization-
encoded setup has been proposed for cube polarizing beam
splitters [28]. Figure 1(a) shows a schematic of the
experiment.

Pairs of single photons were created via type-II sponta-
neous parametric down-conversion in a, nonlinear, potas-
sium titanyl phosphate (PPKTP) crystal. This crystal was
pumped by a 5 mW diode laser centered at 410 nm and
emitted orthogonally polarized photon pairs with a wave-
length of 820 nm and a FWHM bandwidth of 0.6 nm. The
pairs were separated at a polarizing beam splitter; one
photon from each pair served as a trigger, while the second
photon was launched into the QW. At an average heralded
photon rate of �20 000 s�1, the mean longitudinal dis-
tance between two photons was about 250 000 times longer
than the setup length of �60 cm. The probability of ran-
domly creating more than one photon pair simultaneously
was �9� 10�5, i.e., only one photon was in the setup at
any given time.

Quantum coin states were encoded in the polarization
jHi and jVi of the input photon. Throughout our experi-
ment, the initial coin state was set to left-circular polariza-
tion, jLi ¼ ðjHi þ ijViÞ= ffiffiffi

2
p

, using a quarter- and a half-
wave plate, leading to symmetric probability distributions.
For the results presented here, the remaining coin operators
C were Hadamards, realized with half-wave plates set to
22.5�. We can, however, prepare arbitrary pure input states
as well as arbitrary coin operators for each step with
suitable wave plate settings.

The lattice sites of the QW were represented by longi-
tudinal spatial modes. The shift operator S acting on these
modes was implemented by a 27 mm long, birefringent
calcite beam displacer. The displacers had a clear aperture
of 20� 10 mm2 and were mounted on manual, tip-tilt
rotation stages with a resolution of 217 �rad=5� turn.
The optical axis of each calcite prism was cut so that
vertically polarized light was directly transmitted and hori-
zontal light underwent a 2.7 mm lateral displacement into a
neighboring mode. Lattice sites were, typical for discrete
walks on a line, labeled so that there were odd sites at odd
time steps and even sites at even times.
The first two steps of the QW are shown in detail in

Fig. 1(b). The spatial modes after step 1 were recombined
interferometrically in step 2. A series of steps then formed
an interferometric network, Fig. 1(a). We aligned this net-
work iteratively, to a single interferometer per step. For
example, the second beam displacer was aligned to max-
imize the interference visibility of the interferometer in
Fig. 1(b): the state jDi was input in mode ‘‘0’’ and the
beam displacer rotated to maximize the overlap of the
output mode 0 with jDi. The third displacer was then
aligned to the second and so on. We reached interference
visibilities of typically �99:8% per step.
The photons emerging in the N þ 1 spatial modes at the

output of an N-step QW were coupled into an optical fiber
and subsequently detected by a single-photon avalanche
photodiode, in coincidence with the trigger photon. We
measured the probability distributions sequentially, trans-
lating the fiber coupler between the individual modes using
a manual translation stage.
The measured probability distributions for detecting

the photon at a given site, for 1 to 6 steps, are shown in
Fig. 2(a). The experimental data are in excellent agreement
with theory, with an average L1-norm distance, d ¼
1
2

P
ijpexp

i � pth
i j, of 0.031 for the coherent and 0.017 for

the decohered walks. The quality of our data degrades
somewhat for a higher number of steps, largely due to
nonplanar optical surfaces, which caused small relative
phase shifts between the multiple interferometers. The
decohered walk is insensitive to phase errors and therefore
better agrees with theory.
Our scheme has several advantages: first, the interfero-

metric network is inherently stable. The transversal mode-
match is fulfilled because two beams emerging from one
displacer will always be parallel, independent of small
deviations in the optical alignment. The stability and align-
ment procedure of the QW grid are facilitated by the fact
that theN interferometers between stepsN and (N þ 1) are
formed between only 2 optical components. Our setup—
even though it is interferometric—does therefore not re-
quire active phase locking. Secondly, our system scales
well, with the number of optical components increasing as
2N (as opposed to ðN2 þ NÞ=2 in [12,27]), and exhibits
low optical loss of �1% per step. The remaining obstacle
to scalability are nonideal optical components, a problem

FIG. 1 (color). Experimental schematic. (a) Photons created
via spontaneous parametric down-conversion in a PPKTP crystal
are injected into free-space mode 0. Arbitrary initial coin (po-
larization) states are prepared by the first polarizing beam splitter
(PBS) and wave plate combination. Six pairs of coin (Ci) and
shift (Si) operators implement six steps of the walk. Coincident
detection of photons at detector D2 and D1 (4.4 ns time window)
herald a successful run of the walk. (b) Details of our optical
mode numbering convention for the first two steps. The dashed
lines trace out one of the interferometers which are used to align
the quantum walk. (c) A relative angle between two beam dis-
placers reduces the recombined photon’s temporal (�t) and spa-
tial (�x) mode overlap, thereby implementing tunable decoher-
ence.
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that can be alleviated with careful manufacturing or the use
of shorter displacers.

A unique feature of this setup is that tunable decoher-
ence can be introduced by intentional misalignment of QW
steps, Fig. 1(c). Setting a nonzero relative angle between
neighboring beam displacers leads to both a temporal delay
and a transversal mode mismatch between interfering wave
packets. Because the coincidence time window was much
longer than the temporal shift we essentially integrated
over the timing information, which corresponds to dephas-
ing cf. Eq. (2). Similarly, we traced over the spatial mode
information by coupling the photons into a multimode
fiber—as opposed to the single-mode fiber used for the
coherent walks shown in Fig. 2(a). In practice, this reduced
the interference contrast in all interferometers in the re-
spective step. The QW was fully decohered [q ¼ 1 in
Eq. (2)] when the interference visibility in each individual
step reduced to 0, which occurred at a relative angle of
10.5� in our experiment. Figure 2(b) shows the experimen-
tal results given by our system at full decoherence for steps
1 to 6. The probabilities—as expected for a classical ran-
dom walk—follow a binomial distribution around the
origin.

A distinguishing feature of an ideal QW is the speed at
which the walker traverses the line. In particular, the
standard deviation of the QW is proportional to the number
of steps and not, as for the classical walk, its square root
[2]. This has been exploited to design quantum-walk-based
search algorithms that exhibit a Grover-like quadratic
speedup [7]. The measured standard deviations for both
our quantum and fully decohered walks are shown in
Fig. 2(c). The results show very good agreement with
theory: the fully decohered walk spreads diffusively, while
the quantum walk spreads ballistically.

Tunable decoherence enabled us to investigate the
quantum-to-classical transition for a 5-step walk. By ap-

plying Eq. (2) to a two-step walk, see Fig. 1(b), we calcu-
lated the interference visibility in output mode 0 after the
second beam displacer as a function of the decoherence q.
We then adjusted the relative angle, Fig. 1(c), between
beam displacers to a target visibility. Figure 3 shows the
resulting probability distributions, compared to theory
[Eq. (2)]. Note the interesting nonlinear dependences of
the probability distributions on q.
Finally, we demonstrate another qualitative difference

between classical and quantum walks, by incorporating
absorbing boundaries. While a classical walker is eventu-
ally absorbed in the presence of an absorbing boundary, a
quantum walker escapes with probability 1� 2=� [21,22].
A difference between the two exit probabilities first occurs
after 5 steps, making it experimentally accessible with our
current setup and providing a novel way of characterizing
the degree of coherence in the walk. Absorbing boundaries
were implemented using beam blocks in every ‘‘�1’’
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FIG. 2 (color). Probability distributions for successive steps of the (a) quantum and (b) fully decohered (classical) walks up to the
sixth step. Dashed lines show experimental data and solid lines show theoretical predictions. Probabilities are obtained by normalizing
photon counts at each position to the total number of counts for the respective step. The insets show horizontal scans across the walk
lattice for the five-step quantum walk (coupled into single-mode fiber) and decohered random walk (multimode fiber), respectively.
(c) Normalized standard deviation of the probability distribution for quantum (black circles) and classical (red triangles) walks for 1 to
6 steps. Lines show the theoretical values; error bars are smaller than symbol size.

FIG. 3 (color). Transition of a 5-step quantum walk to a
classical random walk. The decoherence parameter q for a given
data set was obtained from a least-squares fit to theory, Eq. (2).
All error bars are smaller than symbol size; the shaded area
represents the theoretical probability distributions.
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spatial mode. Figure 4 shows the measured single-photon
transmission probabilities in the quantum and fully deco-
hered (classical) cases.

The most compelling features of our scheme are the
ability to add tunable decoherence to a QW and the fact
that every individual lattice site is fully accessible at any
given time step. Future work could be to implement ran-
dom or position-dependent coin operators to study walks
on random environments [29], inhomogeneous walks [30]
and topological insulators [31]. We could also add another
walker on a separate line, using the existing setup with a
vertical offset between input beams, or on the same line,
with two or more photons launched in the same (or neigh-
boring) spatial modes. This would allow exploration of en-
tangled QW’s [32], as high-quality polarization-entangled
photons can be routinely produced at high rates [33]. Fi-
nally, the setup can be used to prepare photon-number and
path-entangled states across a large number of modes [34].
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