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The computational cost of exact methods for quantum simulation
using classical computers grows exponentially with system size. As
a consequence, these techniques can be applied only to small
systems. By contrast, we demonstrate that quantum computers
could exactly simulate chemical reactions in polynomial time. Our
algorithm uses the split-operator approach and explicitly simulates
all electron-nuclear and interelectronic interactions in quadratic
time. Surprisingly, this treatment is not only more accurate than
the Born-Oppenheimer approximation but faster and more effi-
cient as well, for all reactions with more than about four atoms.
This is the case even though the entire electronic wave function is
propagated on a grid with appropriately short time steps. Al-
though the preparation and measurement of arbitrary states on a
quantum computer is inefficient, here we demonstrate how to
prepare states of chemical interest efficiently. We also show how
to efficiently obtain chemically relevant observables, such as state-
to-state transition probabilities and thermal reaction rates. Quan-
tum computers using these techniques could outperform current
classical computers with 100 qubits.

electronic structure | quantum computation | quantum simulation

Accurate simulations of quantum-mechanical processes have
greatly expanded our understanding of the fundamentals of
chemical reaction dynamics. In particular, recent years have seen
tremendous progress in methods development, which has enabled
simulations of increasingly complex quantum systems. Although it
is, strictly speaking, true that exact quantum simulation requires
resources that scale exponentially with system size, several tech-
niques are available that can treat realistic chemical problems, at a
given accuracy, with only a polynomial cost. Certain fully quantum
methods—such as multiconfigurational time-dependent Hartree
(MCTDH) (1), matching pursuit/split-operator Fourier transform
(MP/SOFT) (2), or full multiple spawning (FMS) (3)—solve the
nuclear Schrodinger equation, including nonadiabatic effects, given
analytic expressions for the potential energy surfaces and the
couplings between them. These techniques have permitted the
simulation of large systems; as examples we can give MCTDH
simulations of a pentaatomic chemical reaction (4) and of a
spin-boson model with 80 degrees of freedom (5) or an MP/SOFT
simulation of photoisomerization in rthodopsin with 25 degrees of
freedom (6). Ab initio molecular-dynamics techniques such as ab
initio multiple spawning (AIMS) (7) avoid analytic expressions for
potential energy surfaces and instead solve electronic Schrodinger
equations at every time step. This allows one to gain insight into
dynamical problems such as isomerizations through conical inter-
sections (8).

However, there are also chemical processes that are best treated
by completely avoiding the Born—-Oppenheimer approximation. As
examples, we can cite strong-field electronic dynamics in atoms and
multielectron ionization (9, 10) or atomic and molecular fragmen-
tation caused by collisions with energetic electrons or photons (11,
12). Systems that resist the application of the Born—-Oppenheimer
approximation require very general techniques, and the consequent
unfavorable scaling has restricted such simulations to systems with
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a few particles. Here, however, we show that the Born-—
Oppenheimer approximation would not necessarily simplify simu-
lations performed on quantum computers. Indeed, except for the
smallest systems, an explicit treatment of all of the particles would
be both more accurate and more efficient, even for nearly adiabatic
chemical reactions.

Feynman’s idea of using a quantum machine to mimic the
quantum Hamiltonian of a system of interest was one of the
founding ideas of the field of quantum computation (13). Lloyd (14)
subsequently showed that quantum computers could be used to
simulate systems that can be formulated in terms of local interac-
tions, by using resources that scale only polynomially with system
size. Zalka and Wiesner (15, 16) developed a quantum simulation
algorithm for particles in real space and Lidar and Wang (17)
applied it to the calculation of the thermal rate constant of chemical
reactions. Smirnov et al. proposed an analog quantum simulator for
chemical reactions using quantum dots (42). We have previously
shown (18) that quantum computers could be used to simulate the
static properties of molecules, and in this work, we present a general
scheme for using quantum computers for the study of dynamical
chemical properties.

To simulate a quantum system, we must prepare its initial
quantum state, propagate it in time, and finally, extract data of
chemical relevance, such as rate constants. For an efficient quan-
tum simulation, all these tasks must be carried out by using
resources that increase polynomially with increasing system size.
We present a quantum algorithm that meets these requirements.
We also show that for all chemical reactions with more than ~4
atoms, it is more efficient for a quantum computer to simulate the
complete nuclear and electronic time evolution rather than to use
the Born-Oppenheimer approximation.

The polynomial scaling of these methods means they would
enable the study of systems that are, in principle, out of reach for
any classical computer. However, large quantum computers are far
in the future, and so determining the requirements of interesting
calculations in absolute terms is, perhaps, of more interest than
their scaling alone. We show that a quantum computer using these
techniques could outperform current classical computers using 100
qubits, within the design limits of a proposed 300-qubit quantum
computer (19). Although we focus on chemical applications, these
techniques are generally applicable to many physical systems, from
strong-field, multielectron ionization to quantum liquids and con-
densed-matter systems.

This article is organized as follows. We first review Zalka and
Wiesner’s algorithm and show how the difficulty of computing a
wave function’s time evolution depends only on the complexity
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of evaluating the interaction potential. We then consider 3
approaches to the calculation of the interaction potential, in-
cluding a fully nonadiabatic treatment of chemical reactions. We
consider the problem of state preparation for all of the schemes
and, finally, address the problem of measurement. We present 3
readout schemes for reaction dynamics—reaction probabilities,
thermal rate constants, and state-to-state probabilities—that
would allow for efficient evaluation of many parameters acces-
sible to experiment.

Quantum Dynamics

The problem of simulating quantum dynamics is that of determin-
ing the properties of the wave function Oi(r)) of a system at time ¢,
given the initial wave function [l (0)) and the Hamiltonian A of the
system. If the final state can be prepared by propagating the initial
state, any observable of interest may be computed.

We employ an improved version of the real-space quantum
simulation technique developed by Zalka and Wiesner in which a
discrete variable representation of the wave function is used (15,
16). In the 1-dimensional case, the domain of the wave function is
divided into a discrete position basis of n = 2" equidistant points.
The wave function is represented as:

2n—1
() = >, a, (D) = al0 ... 00) + ... +an ... 11).
x=0 nqubm

The spatial wave function is stored in the Hilbert space of the
qubits, and so the spatial resolution grows exponentially with the
number of qubits. For a system with d dimensions, d registers of
n qubits each are used, (k) = [ky)...0k,), representing a grid of
2¢n points. The states of multiple particles can be stored by
adding position registers for each particle. Therefore, only a
polynomially large number of qubits is required to store the
system wave function.

For simplicity, we assume a time-independent Hamiltonian
whose potential depends only on position, H = T + V, where
T = p?2m and V = V(%) are the kinetic and potential energy
operators, respectively. The split operator method (15, 20, 21)
computes the time evolution by separating the kinetic 7" and
potential I energy contributions to the propagator U(f) = e,
Given a sufficiently small time step &, we can write to first order

O(St) — e*rHASt — e*if(x)SteflVA(x)St + 0(8[2)
The operators e~"® and e 7% are diagonal in the position and
momentum representations, respectively. A quantum computer
can efficiently transform between the 2 representations using the
quantum Fourier transform (QFT) (22):

[(82)) = U(5t)|y(0)) = QFTe ~TP¥QFT" ¢ =% y;(0)).

The procedure is iterated as many times as necessary to obtain
the system wave function (7)) after an arbitrary time ¢ to a
desired accuracy.

The application of diagonal unitaries is straightforward on a
quantum computer. Suppose that we have a gate sequence that acts
on an arbitrary position eigenstate as (k) —e V™ [x), Because [1}s)
is a superposition of position elgenstates when this gate sequence
is applied to [i)y), one obtains e ~Va)) in a single application.

We depart from Zalka and Wiesner’s method in the implemen-
tation of this gate sequence. We are free to take the lowest value
of the potential in the domain as 0, and use such units that the
maximum value of the potential is Vipax = 2 — 1, withm an integer.
With this choice of units } takes integer values, and we choose m
large enough that }is resolved with sufficient precision. The integer
m is therefore the number of qubits required to represent
the desired range of potential values with the desired precision. The
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Fig. 1. The quantum simulation algorithm. The potential and kinetic energy
unitaries are applied to a quantum state in turn, with the transformation be-
tween position and momentum representations being performed with the effi-
cient quantum Fourier transform (QFT). The ancilla register is required for phase
kickback and remains unchanged throughout the simulation, whereas the boxed
time step is repeated t/5t times. The proposed algorithm, unlike that of Zalka (15),
does not require that functions be uncomputed and is therefore twice as fast.

gate sequence V, which computes the potential V, acts so that
VX, y) = X, y © V(x)), where y is an m-bit integer labeling a basis
state of the ancilla register, and © denotes addition modulo 2.
We apply the diagonal unitary by phase kickback. The computer
is initialized in the state Cif) ® [l),,, where [l),, in the ancilla
register represents the state [0...001) in m qubits. Applying the
inverse QFT to the ancilla register, followed by 7V, produces

M- Zmy/M

) ® E

2my/M

=e MYy ® Z TR

2
where M = 2™, and we choose & = o The equality obtains

because the ancilla state is an eigenstate of addition (with
eigenvalue e ~2™M corresponding to the addition of ¢) (23). We
see that applying 7V results in the requisite diagonal unitary
action on the wave-function register. The states of register and
ancilla are separable before and after each potential evaluation.
We can also define a quantum gate sequence T that computes the
kinetic energy p*2m: Tp, y) = [p, y © T(p)). This gate is
diagonal in the momentum basis and has efficiently computable
entries on the diagonal (namely, p?). Thus, we use the quantum
Fourier transform to conjugate into the momentum basis and T
is implemented by phase kickback in exactly the same way as V.
The quantum circuit for this algorithm is shown in Fig. 1.

This simulation algorithm is numerically exact in the sense that
all introduced approximations are controlled, so that the error in
the calculation can be arbitrarily reduced with an additional poly-
nomial cost. The only approximations used are the discretization of
time, space, and the potential V(x). The error due to discretization
can be made exponentially small by adding more qubits. The error
due to time discretization can be systematically improved by use of
higher-order Trotter schemes (24). The computational cost of the
algorithm per iteration is the evaluation of V(x), T(p), and 2 QFTs.
Although the QFTs and the quadratic form in the kinetic energy (p?
in the simplest case) can be computed in polynomial time (22, 25),
the evaluation of the potential energy /(x) may not be efficient in
general. For example, a random potential stored in an exponentially
large database requires an exponentially large number of queries to
evaluate. However, any classical algorithm running in O(f(n)) time
can be adapted to a reversible quantum algorithm also running in
O(f(n)) time (26). Therefore, the potential energy V(x) will be
efficiently calculable on a quantum computer if it is efficiently
calculable on a classical computer. Fortunately, this is true for all
chemically relevant cases.

Chemical Dynamics

Every isolated system of chemical interest has the same Hamilto-
nian, which in atomic units is

2

A Di q4;
+

H ~ 2M; E i

i<j Y
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where the sums are over the nuclei and electrons, p; is the
momentum of the ith particle, M; is its mass, g; is its charge, and
r;j is the distance between particles i and j. Both the potential and
kinetic terms can be efficiently evaluated because the arithmet-
ical operations can be performed in O(m?) time (25), and for a
system of B particles there are only O(B?) terms in the sum.*

The fact that the Coulomb potential can be evaluated in O(B>m?)
time implies that chemical dynamics could be simulated on a
quantum computer in O(B*m?) time, an exponential advantage
over known classical techniques for exact quantum simulation.
Here, B is the number of particles, and m is the binary precision the
potential in the region of interest. We want to emphasize that a
quantum simulation would be substantially different from what is
usually done on classical computers. Most significantly, we are
proposing to explicitly track all of the nuclei and electrons on a
Cartesian grid that is sufficiently fine and with time steps sufficiently
short to capture the true electronic dynamics. We will show that this
is not only more accurate but also requires fewer quantum re-
sources.

The supporting information (SI) contains a detailed compu-
tation of the numbers of gates and qubits required for the
quantum simulation of the Coulomb potential. The number of
elementagy gates required to evaluate this potential in 3 dimen-
sions is (Zm3 + 1n12) per pair of particles (Fig. 2). We chose a
method that minimizes the number of ancilla qubits and so is
suited for small numbers of qubits. Note that this scaling is not
asymptotically optimal (the asymptotic requirement would be
0(m?)), so further improvement could be achieved for compu-
tations with high precision (large m) if suitable arithmetical
algorithms were implemented. Storing the wave function of a
system with d degrees of freedom requires nd qubits, so a system
of B particles, with d = 3B — 6 degrees of freedom, requires
n(3B — 6) qubits. To this, one must add the qubits needed for
the ancilla registers, only 4 of which are required for the
Coulomb potential, meaning that simulating these potentials
requires n(3B — 6) + 4m qubits (Fig. 2).

On a small quantum computer, the computational cost of
simulating the interactions between many particles may prove
prohibitive. One could try to simplify matters and focus only on the
nuclear motion by employing the Born-Oppenheimer approxima-
tion. Here, the solution of the electronic structure problem provides
a potential energy surface on which the nuclei move. However, we
show that quantum computers would benefit from the Born—
Oppenheimer approximation only rarely: For many chemical re-
actions, simulating the full dynamics of both electrons and nuclei
will not only yield more accurate results but will also, remarkably,
be faster. This is in sharp contrast to the study of chemical dynamics
on classical computers, where there is frequent need to simplify
calculations by using the Born—-Oppenheimer approximation.

It is difficult to estimate the precise computational cost of using
the Born—-Oppenheimer approximation, because different potential
energy surfaces have different functional forms. Nevertheless, for
any general fitting technique, the complexity of the interpolating
function grows exponentially with increasing dimension of the
system, because exponentially many data points must be used in the
fit if one is to maintain uniform accuracy over the entire domain.
We can provide an estimate of the computational cost for a
potential energy surface that is an interpolating polynomial of
degree K along each dimension (see SI) In that case, the total cost
of the adiabatic simulation is K336 (3m3 + 2r712) per nuclear time
step (which is usually ~1,000 times longer than an electronic time

*Other N-body potentials could also be efficiently evaluated, with cost of O(m2BV) if they
only contain arithmetic that requnres O(mz) tlme For example, the Lennard-Jones po-
tential could be computed by using (2m3 + 3!m?) gates per pair of particles. Simulating
potentials other that the Coulomb po%entlal could be applied to situations such as liquid
helium clusters, and although we do not discuss them in detail, the present algorithm
could simulate such potentials with minimal adjustments.
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Fig. 2. Resource requirements for a quantum simulation of B particles inter-
acting through a pairwise potential. The chemical symbols correspond to the
simulation of the full Coulomb dynamics of the corresponding atom (nucleus and
electrons). The vertical dashed line represents the approximate current limit of
numerically exact quantum simulation on classical computers on a grid (10). (A)
Total qubits required. We require n qubits for each degree of freedom and m
qubits for each ancilla, 4 of which are needed for the Coulomb potential. Hence,
a total of n(3B — 6) + 4m qubits are needed (see S/ for details). The horizontal
dotted line represents a 300-qubit quantum computer, which is believed to be
feasible with near-future technology (19). We assume a grid of 23 points, which
corresponds to n = 10 and would suffice for the simulation of many chemical
reactions or the strong-field ionization of atoms (9, 27). (B) Total elementary
gates required. The 300-qubit computer is expected to achieve 1 billion elemen-
tary quantum operations. The dotted line represents the largest possible simu-
lation of 1,000 time steps, assuming 10 bits of numerlcal accuracy (m = 10).
Computing the Coulomb potential requires (75m3 + mz) gates per pair of
particles (see S/ for details).

step). Numerical experiments with the BKMP2 surface for Hz (28)
indicate that K must be chosen to equal at least 15 if one aspires to
0.1% accuracy in the potential and more for chemical accuracy.
With K = 15, the exponential growth implies that even for heavy
elements (Z ~ 100), the fully dimensional diabatic treatment is
faster for all reactions involving more than four atoms and even for
many smaller reactions, as shown in Fig. 3.

It is perhaps beneficial to briefly discuss the intuitive reasons why
the use of precomputed potential energy surfaces is not as useful on
quantum computers as it is on classical machines. Classically, an
exponential amount of memory is required in general to store the
wave function. However, the ratio of computing power to memory
in most classical computers is large, and the basic floating-point
operations are hardwired. Because the storage capacity is often the
limiting factor, if a wave function can be stored in memory, its
motion on a surface can probably be computed. Quantum com-
puters, on the other hand, require only linearly many qubits to store
the wave function in a superposition state. However, the use of a
precomputed potential requires either the evaluation of a compli-
cated function or a look-up in a potentially large table. The potential
energies must be computed on the fly to take advantage of quantum
parallelism, and it is therefore imperative to keep the interaction
potential as simple as possible. This is achieved by treating all of the
particles explicitly, interacting via the Coulomb interaction.

PNAS | December2,2008 | vol. 105 | no.48 | 18683
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Fig.3. Estimated number of elementary quantum operations (gates) required
for the simulation of chemical reactions. Standard Born-Oppenheimer potential-
energy-surface calculations require time resources exponential in the size of the
system (full line), whereas a fully nonadiabatic, nuclear and electronic calculation
would require only polynomial time (dotted lines). The resulting cutoff indicates
that for all reactions with more than four atoms (dashed line), the Born-
Oppenheimer approximation is always less efficient on a quantum computer
than a diabatic treatment. The complexity of the diabatic computation depends
only on the atomic number Z, whereas the potential energy surfaces are modeled
as polynomials of degree K along each axis. A value of K= 15 isrequired to obtain
0.1% agreement with surfaces such as BKMP2 (28). The position of the cutoff does
notsignificantly depend onthe accuracy of the evaluated potential (m). To obtain
the gate counts, we assume 20 bits of accuracy (m = 20), enough for chemical
precision. The gate counts reflect the fact that an appropriate nuclear time step
is approximately 1,000 times longer than an electronic time step.

An alternative way to compute a potential energy surface would
be to embed an on-the-fly calculation of electronic structure in the
quantum algorithm and thus avoid a classically precomputed fit.
This can be done efficiently because electronic structure calcula-
tions can be performed in polynomial time on quantum computers
(18). Hence, the quantum circuit V would be replaced by a black
box containing the efficient quantum version of the full configu-
ration interaction (FCI) procedure (18). Because the quantum
simulation algorithm exploits quantum effects, a single evaluation
of electronic structure is sufficient for each time step: All of the
nuclear configurations are evaluated in superposition. However, the
electronic structure circuit for the proposed algorithm would re-
quire the atomic positions as input. This would require a modifi-
cation of the original algorithm so that the Coulomb and exchange
integrals are computed by using a quantum circuit rather than
classically. Although this approach, unlike the Born—-Oppenheimer
approximation, is asymptotically appealing, the large overhead
required to compute the exchange integrals quantum mechanically
makes it uninteresting for near-future implementation.

Steane has recently proposed a design for a 300-qubit, error-
corrected, trapped-ion quantum computer that could perform
~10° quantum operations using methods for quantum gates that
have already been experimentally implemented (19). On a three-
dimensional grid of 23Y points, such a computer could store the wave
function of a 10-particle system (Fig. 2). By comparison, classical
computers implementing a comparable grid-based algorithm are
limited to computing the full quantum evolution of a three-particle
system, such as a helium atom (9, 10). Even a relatively modest
quantum computer with 100 qubits could simulate the electron
dynamics or ionization of the lithium atom, a task beyond the reach
of classical computers using grid-based methods (10). The simplest
chemical reaction, H + H, — H, + H, is a six-particle system and
could therefore be simulated by Steane’s computer in a fully
dimensional diabatic regime. Although other classical methods may
be able to reach somewhat larger examples, the exponential scaling
of all known classical exact methods means that the examples given

18684 | www.pnas.org/cgi/doi/10.1073/pnas.0808245105

here are close to the cross-over point between classical and quan-
tum computing for chemical dynamics. There remain 2 questions:
how to prepare the initial state of the quantum computer and how
to extract useful information out of the final state.

State Preparation

The preparation of an arbitrary quantum state is exponentially
hard, in general (29). Nevertheless, we show that most commonly
used chemical wave functions can be prepared efficiently. Be-
cause the significant deviations from Born—-Oppenheimer be-
havior occur during evolution and usually do not concern initial
states, we will prepare the initial state using the Born—
Oppenheimer approximation. That is, the system wave function
will be a product state [y = Onue) Oheree) of nuclear and
electronic wave functions, each in its own quantum register.

Nuclear motions can be expressed in normal mode coordinates
if the displacements from equilibrium are small, which is the case
in molecules at chemically relevant temperatures. The nuclear wave
function is then, along each coordinate, a superposition of har-
monic oscillator eigenstates, which are themselves products of
Gaussians and Hermite polynomials. It is known that superposi-
tions corresponding to efficiently integrable functions can be pre-
pared on a quantum computer in polynomial time (15, 30). There-
fore, Gaussian wave packets and Hermite polynomials are
efficiently preparable, meaning that we can prepare good approx-
imations to molecular vibrational states and Gaussian wave packets.

Gaussian wave packets can also be used to prepare the electronic
wave function. Indeed, it is customary in electronic structure theory
to expand molecular orbitals in terms of atomic orbitals, which
themselves are superpositions of Gaussian-type orbitals. The or-
bital occupation numbers can be obtained from electronic structure
calculations, including our earlier quantum algorithm (18). Conse-
quently, the occupied orbitals, which are superpositions of Gaus-
sians, can all be prepared efficiently.

One final consideration is the exchange symmetry of multielec-
tron wave functions. Abrams and Lloyd proposed a method for
preparing antisymmetric wave functions (31) starting with a Har-
tree product of molecular orbitals. We propose to use this method
for preparation of multielectron wave functions, noting that it
suffices to prepare the initial state with the correct exchange
symmetry, because the exchange operator commutes with the
Hamiltonian.

Of course, other strategies for state preparation can be pursued,
such as the phase-estimation algorithm (32). If we are able to
prepare a state [5) that has a significant overlap (SCE) with an
eigenstate [E) (not necessarily the ground state), phase estimation
followed by measurement will collapse the wave function to the
desired eigenstate with probability SCE)F. Alternatively, the
ground state can be prepared by the adiabatic state-preparation
algorithm (18). This is of particular significance to the simulation of
full chemical dynamics, because the electronic ground state is
usually a good approximation for the reactants.

Measurement

After preparing the initial state and simulating its time evolution
using the methods described above, we must extract chemically
relevant information from the final system wave function. In
general, quantum tomography is the most general approach to
the estimation of an unknown quantum state or a quantum
process (26) by measuring the expectation values of a complete
set of observables on an ensemble of identical quantum systems.
However, this full characterization of quantum systems always
requires resources that grow exponentially with the size of the
system. To avoid such problems, alternative approaches for the
direct estimation of certain properties of quantum dynamical
systems have been recently developed (33, 34). Here, we likewise
show that the data of greatest chemical significance can be
obtained directly with only a polynomial number of measure-

Kassal et al.
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ments. In particular, we present algorithms for obtaining the
reaction probability, the rate constant, and state-to-state tran-
sition probabilities.

The reaction probability, given a certain initial wave function of
the reactants, is the likelihood of observing, after a sufficiently long
time, the products of the chemical reaction. To find it, we divide the
real-space domain of the wave function into r disjoint regions
corresponding to subdomains of chemical interest. In chemistry,
these regions are typically a few simple polytopes. The simplest
division is into only 2 regions, 1 for the reactants and 1 for the
products, separated by the transition state dividing surface (TSDS).
The reaction probability is the sum of the probabilities of finding the
final wave packet in the product region(s). It is straightforward to
construct a classical point location circuit for the function R(x) that,
given a nuclear position vector x, identifies which region it is in by
returning an integer label corresponding to that region. There is a
corresponding reversible circuit that performs the transformation
o)y — O @ R(x)). We can apply this circuit to the final state
O ) = 2yax[X), to which we add an additional ancilla register with
{og, rOqubits. That is, applying this reversible circuit to Ciy)L0)
yields 2ax[k) [R(x)). Measuring the ancilla register will return i
with probability P;, which equals the probability of finding the wave
packet in the region i. We can obtain all of the probabilities P; by
employing an ensemble measurement of the ancilla register. Be-
cause individual measurements are uncorrelated, the error of the
estimate of the probabilities decreases as 1/\/M for M repetitions
of the experiment. However, it is possible to achieve a convergence
of 1/M, which is the ultimate limit of quantum metrology (35), by
using techniques such as amplitude estimation (36, 37). Next, we use
these disjoint regions to compute the rate constant.

The rate constant k(7)) at temperature 7 is a thermally weighted
average of cumulative reaction probabilities (38):

©

K(T) = N(E)e EMT4E

1
27hQ(T) f

0

> PA{, E)e FRTAE,
LE

1
" 2mhQ(T)

where E is the energy, Q(T) is the reactant partition function, and
N(E) is the cumulative reaction probability, N(E) = 2; P(¢, E). The
vector ¢ is a specification of all of the quantum numbers of the
reactants, and P,(¢, E) is the reaction probability given that the re-
actants are in the eigenstate specified by ¢ and E. The sum ranges
over all possible ¢ and with E from zero to a cutoff. Note that on
a quantum computer, the cutoff can be made exponentially large,
or the energy step AE exponentially small, by adding more qubits.

We can compute the rate constant on a quantum computer if we
propagate in time not a pure wave function but the correct thermal
mixed state. In that case, the expectation value of the reaction
probability would equal the rate constant, up to a known factor. The
required initial state is p(0) = C*Z¢el(E, T)*Tho(L, E)Xdo(¢ E)T
where T'(E, T) = (exp(—E/ksT)AE2mhQ(T))"? is the square root
of the appropriate Boltzmann factor, C is a normalization constant,
and Cipo(¢, E)) is a real-space reactant eigenfunction corresponding
to quantum numbers ¢ and energy E. If we propagate p(0) for time
t using the simulation algorithm, the system will be in the final state
plt) = CSoeT(E, TPTb(E E)b(E E)I where (L, E)) now
denotes the time-evolved version of state Tipo(E, E)) (note that,
except in exceptional cases, [tp,(¢, E)) is not an eigenfunction of
either reactants or products). If we have a quantum register in this
mixed state, we can add an ancilla qubit and use the technique of
dividing the domain into reactant and product regions as described
above. Finally, a measurement of the ancilla qubit produces (1) with
probability C?%k(T). The precision of k(T) thus obtained goes as 1/M
with the number of measurements if we use amplitude estimation.
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The previously proposed approach for estimating reaction rates
(17) evaluates the rate constant by computing a flux—flux correla-
tion function based on a polynomial-size sample of the wave
function in the position basis. In contrast, our approach carries out
the integration explicitly on the quantum computer by using
amplitude amplification, which provides a quadratic improvement
over algorithms that rely on classical sampling and postprocessing.

The thermal state p(0) can be prepared efficiently on a quantum
computer. We begin by preparing a superposition of the reactant
state labels in terms of and E, i.e., C2¢zI'(E, T)L, E), with C and
I' as defined above. Here, [, E) contain only the state labels and
not position-space wave functions. If we assume that the thermally
accessible states can be enumerated by a polynomial number of
qubits and that the energy can be specified to a certain precision AE,
we see that the states [, E) require only polynomially many qubits
to store. The superposition itself can be prepared efficiently because
I'(E, T) is an exponential function of the energy and is therefore
efficiently preparable (15, 30).

The next step is to generate, by doing state preparation in
superposition, the state (Do) = C2Z el'(E, T)IL, E)Opo(L, E)), in
which each term is the tensor product of [, E) and the corre-
sponding real-space reactant eigenstate [ipo(g, E)). The states
Oho(¢, E)) must have definite energy E. Hence, one can represent
an initial state as a direct product of discrete reactant internal states
[specified by ¢ with energy E()] and a wave packet with kinetic
energy Ex = E — E(&) (38). The discrete part can be prepared by
using the state-preparation approach described above. The incom-
ing wave packet can be approximated with a Gaussian with a kinetic
energy expectation value of Ey. This approximation can be im-
proved by increasing the width of the Gaussian, which can be
doubled by the addition of a single qubit to the position register.
This would halve the momentum uncertainty of the wave packet.
With sufficiently many qubits, the error incurred in this approxi-
mation could be made smaller than errors from other sources, such
as grid discretization. Once we have prepared [Pg), we will no
longer use the register containing the states [T, E). If we trace this
register out, we can see that the remaining state register is a mixed
state with density operator p(0), as desired.

Finally, we show how to obtain state-to-state transition proba-
bilities. Most chemical reactions can be regarded as scattering
processes, and it is therefore desirable to know the scattering
S-matrix. In particular, it is these state-to-state transition ampli-
tudes that are accessible to experiment. Heretofore we have con-
sidered the joint wave function of all of the molecular species. To
compute state-to-state probabilities, however, we must ensure that
each reactant molecule is in a well-defined molecular state. For
example, to probe the state-to-state dynamics of the H + H,
reaction, we would need to prepare a particular state of the
hydrogen atom plus a state of the hydrogen molecule, and not
simply a state of the overall H; aggregate. Given these states,
prepared in the center-of-mass coordinate systems of each mole-
cule, one must perform coordinate transformations to put them on
acommon grid. For each molecule, the Cartesian coordinates of the
particles are linear, invertible functions of their center-of-mass
coordinates. Because the coordinate transformations can be com-
puted by an efficient, reversible, classical circuit, they can also be
efficiently computed quantum mechanically.

We concentrate here on obtaining only the vibrational state-to-
state distributions. Using the techniques of state preparation above,
we prepare each reactant molecule in a vibrational eigenstate so
that along each of its normal mode coordinates, the molecule is in
an eigenstate of the corresponding potential. After all of the
molecules are thus prepared, their wave functions are transformed
to a common Cartesian system. This initial state is evolved as usual
until the molecules separate into isolated products.

At large intermolecular separation, the center-of-mass motion
and the normal mode coordinates again become separable. There-
fore, an orthogonal transformation can be applied to each product
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molecular fragment so that its Cartesian coordinates can be trans-
formed into normal modes. The quantum phase estimation algo-
rithm can then be used to extract the populations and eigenenergies
of the product vibrational states.

For an isolated product molecule, we can expand the final state
in terms of the normal modes: (W') = X, a'y[¥y), where [E'y) is
the position representation of the eigenstate corresponding to
product occupation number vector v'. The state-to-state transition
probabilities are then P, = [k}]?, and as mentioned above, they
can be determined by using the phase-estimation algorithm of
Abrams and Lloyd (32) for each degree of freedom. We can obtain
good measurement statistics with only a polynomial number of
measurements because at typical temperatures, the products of
chemical reactions will have appreciable population in only a small
number of vibrational eigenstates.

Conclusion

The advantages of the methods presented here are not limited to
chemical reaction dynamics but can be applied to many areas of
physics. This is true, in particular, because the complexity of the
algorithm is proportional to the complexity of calculating the
potential and because the laws of nature are usually captured by
simple, few-body interactions. For example, by using a quantum
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computer to study atoms in the presence of a strong, time-
dependent electric field, one could simulate such effects as multi-
electron ionization or attosecond pulse generation (9, 10, 27).
Quantum computers also offer the promise of predicting real-time
properties of superfluids (39, 40) and of providing tests for effective
potentials for water phases (41).

We close by reiterating the need for a careful reexamination of
the suitability of traditional quantum approximations for use on
quantum computers. Previously, we had shown that a quantum
implementation of full configuration interaction scales better than
coupled cluster approaches [in particular CCSD(T)], and in this
work, we show that simulating the complete nuclear and electronic
time evolution is more efficient on quantum computers than using
the Born—Oppenheimer approximation, a central tool of theoretical
chemistry. We can imagine the development of a wide variety of
techniques and approaches tailored for natural quantum simula-
tors, which, themselves relying on the rules of quantum mechanics,
give us a deeper understanding of physical phenomena.
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